Leica 3D Disto Руководство по эксплуатации STREET STREET

Версия 3.0 Русский

- when it has to be **right**

3D Disto, Введение

Введение

Покупка

Поздравляем с приобретением изделия серии Leica 3D Disto.

В данном Руководстве содержатся важные сведения по технике безопасности, а также инструкции по настройке прибора и работе с ним. Более подробные указания по технике безопасности имеются в разделе «12 Техника безопасности». Прежде, чем включить прибор внимательно прочитайте руководство по эксплуатации.

Идентификация продукта

Серийный номер вашего изделия указан на паспортной табличке, см. «12.8 Нормы FCC (применимы в США)». Впишите серийный номер в ваше руководство и используйте его при обращении в официальный сервисный центр или при регистрации на портале Leica MyWorld.

Серийный номер:

Обозначения

Используемые в данном Руководстве символы имеют следующий смысл:

Тип	Описание
<u>М</u> Опасно	Означает непосредственно опасную ситуацию, которая может привести к серьезным травмам или даже к летальному исходу.
Предупреждение	Означает потенциально опасную ситуацию или нештатное использование прибора, что может привести к серьезным травмам или даже к смертельному исходу.
<u></u> Осторожно	Означает потенциально опасную ситуацию или нештатное использование прибора, способные вызвать травмы малой или средней тяжести или привести к значительному материальному, финансовому или экологическому ущербу.
ł	Важные разделы документа, содержащие указания, которые должны неукоснительно соблюдаться при выполнении работ для обеспечения технически грамотного и эффективного использования прибора.

Торговые марки

 Windows является зарегистрированной торговой маркой корпорации Microsoft Corporation.

Все остальные торговые марки являются собственностью их обладателей.

3D Disto, Оглавление

Оглавление

В этом	Гл	ава			Стр.
Руководстве	1	Как	работать	с этим документом	10
	2	Техн	ехническая терминология и обозначения		
	3	Опис	сание си	стемы	27
		3.1	Общая	і информация о системе 3D Disto	27
		3.2	Содер	жимое контейнера	29
		3.3	Компо	ненты прибора	31
			3.3.1	3D Disto	31
			3.3.2	Блок управления	35
			3.3.3	Пульт дистанционного управления RM100	36
		3.4	Источн	ник питания	37
			3.4.1	3D Disto	37
			3.4.2	Блок управления	38
			3.4.3	Пульт дистанционного управления RM100	40
		3.5	Конце	пция программного обеспечения	41

4	Поль	зователь	ский интерфейс	48
	4.1	Блок уг	іравления	48
		4.1.1	Дисплей	49
		4.1.2	Основная рабочая панель	52
		4.1.3	Панель инструментов	53
		4.1.4	Значки и символы	54
	4.2	Пульт д	истанционного управления RM100	58
5	Настр	ройка пр	ибора	59
	5.1	Процед	цура включения	59
	5.2	Помощ	НИК	67
	5.3	Конфиг	урация прибора и настройки меню	69
	5.4	Управл	ение данными	73
		5.4.1	Общие сведения	73
		5.4.2	Диспетчер файлов	76
		5.4.3	Администрирование фотографий и контрольных точек	77
		5.4.4	Передача данных	79
		5.4.5	Экспортированные файлы	85
	5.5	Калькул	лятор	87

6	Рабо	та с прибором	90
	6.1	Измерения	90
	6.2	Видоискатель	91
	6.3	Алгоритм измерения	96
	6.4	Сенсорный экран в области эскиза	103
	6.5	Сложение и вычитание	105
	6.6	Расчет площади и объема	108
		6.6.1 Горизонтальные площади/объемы	109
		6.6.2 Наклонные площади	111

7	Приложения			
	7.1	Общие	сведения	112
	7.2	Набор	инструментов	113
		7.2.1	Вертикальная юстировка	115
		7.2.2	Наведение	117
		7.2.3	Определение уровня	119
		7.2.4	Метровая разметка	121
		7.2.5	Определение высоты	123
		7.2.6	Параллельная линия	125
	7.3	Местоп	юложение	127
	7.4	Сканир	ование помещения	133
		7.4.1	Измерение в ручном режиме	135
		7.4.2	Режим разворота	137
		7.4.3	Программные пакеты CAD	139
		7.4.4	Автоматическое сканирование	156
	7.5	Проект	ор	166
		7.5.1	Последовательность действий	167
		7.5.2	Наведение лазера и разметка с помощью пульта	
			дистанционного управления RM100	174
8	Сооб	щения о	б ошибках	175

3D	Disto,	Оглавление
----	--------	------------

0	D a a a c c		170
9	повер	рки и юстировки	1/8
	9.1	Общие сведения	178
	9.2	Смещение перекрестья	180
	9.3	Ошибка вертикального указателя	182
	9.4	Калибровка датчика наклона	185
	9.5	Восстановление заводских настроек	187
10	Защи	та прибора (от воровства)	188
11	Транс	портировка и хранение	190
	11.1	Транспортировка	190
	11.2	Хранение	191
	11.3	Сушка и чистка	192
12	Техни	іка безопасности	193
	12.1	Общие сведения	193
	12.2	Штатное использование	194
	12.3	Ограничения по использованию	196
	12.4	Уровни ответственности	197
	12.5	Риски эксплуатации	198
	12.6	Классификация лазера	203
	12.7	Электромагнитная совместимость (EMC)	205
	12.8	Нормы FCC (применимы в США)	209
	12.9	Соответствие национальным нормам	213

13 Технические характеристики	215	
14 Ограниченная международная гарантия	а, лицензионное соглашение по	
программному обеспечению	221	
Алфавитный указатель 224		

Как работать с этим документом

(B)	Настройкой системы и изучением данного руководства рекомендуется заниматься одновременно.
Алфавитный	Этот указатель размещен в конце данного Руководства.
указатель (இ	Экранные клавиши, поля ввода и другие дисплейные функции достаточно просты для понимания и не требуют дополнительных объяснений.
Область применения данного документа	Данное руководство относится к приборам 3D Disto и соответствующему программному обеспечению.

Другие документы	Название	Описание/формат		Adobe
	3D Disto Руководство по эксплуатации	Содержит все необходимые указания и инструкции для работы с прибором на базовом уровне. Кроме того, в этом документе сделан обзор основных функций инструмента, приведены его технические характеристики и указания по технике безопасности.	-	~
	Краткое описание 3D Disto	Предназначено для использования в качестве краткого руководства в полевых условиях.	~	~
	Инструкции по безопасности	Содержит важные инструкции по технике безопасности при работе с прибором 3D Disto.	✓	√

Источники полной документации и программного обеспечения для 3D Disto:

- Компакт-диск Leica 3D Disto с данными.
- https://myworld.leica-geosystems.com.

myWorld@Leica Geosystems (https://myworld.leica-geosystems.com) предлагает широкий спектр услуг, информации и обучающих материалов. Система myWorld предоставляет круглосуточный доступ ко всем соответствующим службам в течение 7 дней в неделю. Это повышает эффективность работы и позволяет своевременно обновлять программное обеспечение оборудования в соответствие с новейшей информацией от Leica Geosystems.

Служба	Описание
myProducts	Просто добавьте все изделия Leica Geosystems, которыми владеете вы и ваша компания. Просматривайте подробную информацию об имеющихся изделиях, приобретайте дополнительные опции, обновляйте программное обеспечение изделий и скачивайте актуальную документацию.
mySupport	Создавайте новые заявки на обслуживание изделий, на которые ответят местные группы поддержки Leica Geosystems. Просматривайте полную историю оказанной технической поддержки и подробную информацию по каждой заявке на обслуживание, если при оформлении новой заявки требуется сослаться на предыдущую.
myTraining	Расширяйте знания о продукции в кампусе Leica Geosystems – информация, знания, обучение. Изучайте новейшие материалы в интерактивном режиме или загружайте обучающие материалы об имеющихся изделиях. Получайте последние новости об имеющихся изделиях и регистрируйтесь на семинары и курсы, проводимые в вашей стране.

Техническая терминология и обозначения

2

- а) Линия визирования;
- b) Ось наклона, горизонтальная ось вращения прибора;
- с) Вертикальная ось, вертикальная ось вращения прибора.
- Линия визирования, лазерный луч и перекрестие должны быть совмещены. Подробней см. «9 Поверки и юстировки».

Вертикальный

угол

Параметры настройки: Горизонтальный = 0

а) Вертикальный угол: [°], [гон], [1:n] или [%].

Параметры настройки: горизонтальный угол = 90°/100 гон.

а) Вертикальный угол: [°] или [гон].

а) Базовая высота:

Уровень, от которого отсчитываются все высоты.

Базовая точка: Точка, от которой отсчитываются все размеры и положения.

Датчик наклона

Датчик угла наклона гарантирует точность результатов даже, если 3D Disto не установлен горизонтально.

Датчик наклона включен = работает Все результаты измерений привязаны к горизонтальной оси и горизонту, если 3D Disto установлен в пределах от 0° до 3°.
 Видоискатель и перекрестье
 Видоискатель – это встроенная камера, показывающая цель на дисплее блока управления.

• **Перекрестье** — это наводящий указатель, отображаемый видоискателем блока управления.

Контрольные точки

Контрольные точки **служат для привязки измерений к системе координат**. Контрольные точки позволяют менять местоположение 3D Disto или продолжать измерения позже таким образом, чтобы все результаты полностью совпадали друг с другом.

- Пометьте и зафиксируйте на стенах, потолке или полу рабочей зоны от трех до пяти самоклеящихся марок.
- 2. Промерьте эти марки прибором и сохраните в качестве контрольных точек.

- 3. Переместите или установите 3D Disto позже в «любом другом месте».
- Снова прибором определите контрольные точки. 3D Disto пересчитает координаты, что позволит продолжать измерения.

Подробней см. «7.3 Местоположение».

Координаты Координаты описывают положение точки в двух или трехмерном пространстве.

Измерение

Результаты измерений могут быть перенесены на подключенный ПК или USB-флеш-накопитель для последующей обработки.

 Разметка или
 Допускается импорт проектных данных в формате DXF или общем табличном

 проецирование
 формате, которые могут быть использованы для разметки соответствующих точек или сеток

Линейка для Этот вспомогательный инструмент служит для измерения недоступных или смещенных точек скрытых точек.

Описание системы

3.1 Общая информация о системе 3D Disto

Общая информация

3

Leica Geosystems' 3D Disto — трехмерная измерительно-проекционная система, предназначенная для измерения точек в помещении из одного установочного положения и формирования трехмерных данных, готовых для последующей обработки.

- a) 3D Disto.
- b) Кабель USB.
 - Блок управления.
- d) Пульт

дистанционного управления RM100. Управление прибором 3D Disto осуществляется через блок управления. Помимо этого, для исполнения ряда функций прибора может использоваться пульт дистанционного управления RM100.

Содержимое контейнера

Содержимое контейнера, часть 1 из 2

3.2

- а) Прибор 3D Disto со встроенной картой беспроводной связи SD;
- b) Кабель USB 3D Disto для подключения блока управления Кабель питания 3D Disto для подключения блока управления Кабель Micro-USB для подключения к ПК;
- компакт-диск, содержащий Инструкцию по технике безопасности, Краткое руководство по 3D Disto, Сертификат СЕ и производителя, Модуль памяти USB;
- Четыре кабеля питания 3D Disto под различные национальные стандарты;
- е) Самоклеющиеся мишени, по 50 шт. в пакете;
- f) Пульт дистанционного управления RM100;
- g) Источник питания блока управления;
- Переходники для источника питания блока управления под различные национальные стандарты.

- і) Линейка для смещенных точек;
- j) Источник питания3D Disto;
- к) Блок управления со стилусом, зажимом для крепления на штатив и ремешком.

3.3 Компоненты прибора

3.3.1 3D Disto

Компоненты прибора, механизированная часть

Компонент прибора, аккумуляторная батарея

- а) Резьба штатива 5/8";
- b) Метка 90°;
- c) Разъем питания 3D Disto;
- d) Светодиод состояния аккумулятора;
- е) Разъем кабеля данных;
- f) Разъем питания блока управления.

Описание кнопок и светодиодов

Кнопка/ светодиод	Описание
Кнопка включения	Кнопка включения прибора. Неподключенный к блоку управления или ПК прибор выключается самостоятельно через 15 минут.
Светодиоды состояния 3D Disto	 Зеленый и оранжевый светодиоды горят непрерывно: 3D Disto загружается. Мигает оранжевый светодиод: выполняется самовыравнивание или наклон > 3°. Мигает зеленый светодиод: 3D Disto готов к измерению. Датчик наклона включен. Оранжевый светодиод горит непрерывно: возникла ошибка. Подробней см. «8 Сообщения об ошибках». Зеленый и оранжевый светодиоды горят непрерывно: нажмите кнопку питания для перезагрузки прибора.
	Только для опытных пользователей: выключение датчика наклона • Зеленый светодиод мигает один раз; оранжевый светодиод мигает три раза.

Кнопка/	Описание
светодиод	
Светодиод состояния аккумулятора	 Если прибор включен и подсоединен к зарядному устройству: Зеленый светодиод мигает 1 раз: аккумулятор заряжен на 25%. Зеленый светодиод мигает 2 раза: аккумулятор заряжен на 50%. Зеленый светодиод мигает 3 раза: аккумулятор заряжен на 75%.
	 Зеленый светодиод горит непрерывно: аккумулятор заряжен полностью.
Лазер	• ВЫКЛ.: видоискатель выключен или выполняется
дальномера	автоматическое наведение 3D Disto.
	• ВКЛ. : видоискатель включен или пользователь наводит прибор с пульта дистанционного управления.
	 Мигание: указание точного положения проецируемой точки.

3.3.2 Блок управления

Компоненты блока управления

- а) Кнопка включения;
- b) Стилус;
- с) Дисплей 4,8" с сенсорным экраном;
- d) Разъем питания;
- e) Порт USB, тип А;
- f) Зажим для крепления на штатив, раздвигаемый;
- g) Ремешок;
- h) Порт Micro-USB, тип Micro-B.

3.3.3

Пульт дистанционного управления RM100

Компоненты пульта дистанционного управления

- а) Кольцо для ключей;
- b) Батарейный отсек;
- с) Кнопка Зажим;
- Кнопки навигации: вверх/вниз/вправо/влево;
- е) Светодиод управления.
3.4 Источник питания

3.4.1 3D Disto

Источник питания 3D Disto

ŝ

- Прибор может питаться от внутреннего или внешнего источника.
- Внутренний источник: аккумуляторная батарея с несъемными ионнолитиевыми аккумуляторами, 14,4 В, 63 Вт.

• Внешний источник:

Источник питания 3D Disto, подсоединяемый через кабель с вилкой национального стандарта. Вход: 100—240 В, 50/60 Гц. Выход: 24 В пост. тока, 2,5 А. Длина: 1,80 м.

Замену аккумуляторной батареи разрешается производить только официальным сервис-центрам Leica Geosystems.

3.4.2 Блок управления

Источник питания блока управления Питание блока управления может осуществляться от внутреннего или внешнего источника.

• Внутренний источник: несъемная литиевая полимерная батарея, 2500 мАч, 3,7 В пост. тока.

Для экономии энергии дисплей блока управления выключается после 15-минутного простоя.

Внешний источник:

Кабель питания от 3D Disto; Кабель питания от электросети с адаптером пер/пост. тока.

 Кабель питания от электросети с адаптером пер/пост. тока. Имеются вилки адаптера стандартов ЕС, США, Великобритании и Австралии. Вход: 100— 240 В, 50/60 Гц. Выход: 5,2 В пост. тока, 2000 мА. Длина кабеля: 1,50 м.

- Блок управления заряжается при подключении сетевого адаптера к электросети.
- Питание от 3D Disto по кабелю: > 5 В, 2,5 А, длина кабеля: 2,00 м.

Зарядка блока управления возможна только в том случае, если 3D Disto заряжен более чем на 25 %.

3.4.3 Пульт дистанционного управления RM100

Источник питания пульта дистанционного управления RM100 Пульт дистанционного управления RM100 питается от одной щелочной батареи типа AA, 1,5 B.

- Чтобы открыть батарейный отсек, толкните его крышку в направлении стрелки.
- 2. Замените батарею и установите крышку.

Концепция программного обеспечения

Программное обеспечение системы 3D Disto

3.5

Программное обеспечение 3D Disto охватывает	госновные функции прибора:
---	----------------------------

- В этом программном обеспечении предусмотрено несколько языков интерфейса. Желаемый рабочий язык можно выбрать в процессе первоначальной настройки или в меню Настройка.
- В случае некорректного функционирования прибора его можно перезагрузить.
 Для перезагрузки блока управления следует нажать кнопку () и удерживать ее в течение 10 с.
- Для возврата к заводским настройкам программного обеспечения перейдите в Меню, нажмите Настройки и Возврат к настройкам по умолчанию.
- Для перезагрузки 3D Disto нажмите кнопку () и удерживайте ее в течение 5 с.

Приложения Для прибора разработаны несколько приложений со всплывающими помощниками, направляющими в процессе работы. Эти приложения можно проверить в демонстрационном режиме или активировать с использованием лицензионных ключей.

Демонстрацион- ный режим	Имеющиеся приложения можно проверить в демонстрационном режиме. Этот режим предоставляет полнофункциональное программное обеспечение на 40 рабочих часов. По истечении срока действия демонстрационного режима отображается окно напоминания.
	Чтобы активировать приложения в демонстрационном режиме, выполните следующие действия: 1. Нажмите Меню » Приложения » Демонстрационный режим .
	2. Все приложения перечисляются в меню и отмечаются знаком 🕈 до истечения срока действия демонстрационного режима.
Приложения, разработанные по индивидуальному заказу	Программное обеспечение можно разработать под конкретные требования пользователя с использованием среды разработки третьей стороны. Для получения дополнительной информации обращайтесь к представителю Leica Geosystems.

Лицензирование и Приложения активируются путем запуска демонстрационного режима или активация введения лицензионного ключа одним из двух приведенных ниже способов: приложений

- Синхронизация с домашней страницей MyWorld на www.leica-geosystems.com:
- Нажмите кнопку () и соедините блок управления и ПК кабелем Micro-USB. Блок управления отображается на ПК в виде съемного диска.

2. Если блок управления не распознает соединение с ПК автоматически,

нажмите значок

или установите соединение через настройки меню.

- После установления связи запустите интернет-обозреватель и перейдите на домашнюю страницу MyWorld. Зарегистрируйте ваш приборс помощью введения его номера с паспортной таблички под лазерным дальномером. См. «Маркировка 3D Disto».
- Выберите страницу MyProduct (Мой прибор) и нажмите кнопку download (загрузка) для загрузки лицензионных ключей.
- 5. Всплывает окно сохранения файла лицензионного ключа. Сохраните файл в папке **Лицензия** на блоке управления.

Варианты программного обеспечения 3D Disto для Windows

- 1. Установите на ПК программное обеспечение 3D Disto.
- Запустите интернет-обозреватель и перейдите на домашнюю страницу MyWorld. Зарегистрируйте ваш приборс помощью введения его номера.
- 3. Выберите страницу **MyProduct** (Мой прибор) и нажмите кнопку download (загрузка) для загрузки лицензионных ключей.
- 4. Сохраните лицензионный ключ в папке **Лицензия** в каталоге Mou документы\Leica Geosystems\3D Disto.

- Ручной ввод лицензионного ключа:
 - 1. Нажмите значок 🔲 и перейд

и перейдите в меню Меню » Устройство »

Программное обеспечение » Лицензия.

2. Введите ключ со страницы MyWorld и нажмите кнопку **OK**.

Активированные приложения доступны в меню Приложения.

Обновление программного обеспечения Нажмите кнопку () и соедините блок управления и ПК кабелем Micro-USB.

Перед запуском обновления программного обеспечения во избежание потери данных полностью зарядите аккумуляторную батарею блока управления. Не отсоединяйте блок управления от ПК до завершения загрузки. Перед запуском обновления программного обеспечения сохраните и экспортируйте данные измерений. 2. Если блок управления не распознает соединение с ПК автоматически,

нажмите значок 岩

лили установите соединение через настройки меню.

- После установления связи запустите интернет-обозреватель и перейдите на домашнюю страницу MyWorld. Зарегистрируйте ваш приборс помощью введения его номера.
- 4. Перейдите на страницу MyProduct (Мой прибор), выберите вкладку Программное обеспечение и нажмите кнопку Обновить программное обеспечение. MyWorld автоматически проверяет версию программного обеспечения на блоке управления и запускает загрузку, если требуется обновление. Этот процесс выполняется пошаговым образом под руководством программы-мастера.
- 5. Отсоедините блок управления от ПК и запустите установку через Меню » Устройство » Программное обеспечение » Обновить.

Варианты программного обеспечения 3D Disto для Windows

- 1. Запустите интернет-обозреватель и перейдите на домашнюю страницу MyWorld. Зарегистрируйте ваш приборс помощью введения его номера.
- Выберите страницу MyProduct (Мой прибор) и щелкните последнюю версию программного обеспечения, затем нажмите кнопку Download (Загрузка).
- Сохраните файл в папке Update в каталоге Мои документы\Leica Geosystems\3D Disto и запустите установку через Меню\Устройство\ Программное обеспечение, Обновить.

4 Пользовательский интерфейс

Блок управления

4.1

данных

S

Ввод Сенсорный экран с диагональю 4,8 дюйма является основным управляющим пользовательских устройством прибора 3D Disto.

Он используется для открытия разных приложений и перехода между пунктами меню, а также для управления прибором 3D Disto.

Помимо этого, для исполнения ряда функций прибора может использоваться пульт дистанционного управления RM100.

При работе с сенсорным экраном компания Leica Geosystems рекомендует использовать прилагаемый стилус.

4.1.1 Дисплей

Все показанные изображения дисплея являются примерами. Местная версия программного обеспечения может отличаться от базовой версии.

Дисплей

(B

- а) Поле результирующего значения с клавишей выбора типа значения;
- b) Строка заголовка с клавишей возврата;
- с) Панель инструментов;
- d) Положение прибора 3D Disto;
- е) Поле эскиза/видоискатель;
- f) Строка состояния;
- g) Функция увеличения изображения и масштаб;
- h) Основная рабочая панель.

Описание

Элемент	Описание
Строка заголовка	Показывает работающее приложение.
	С лужит для сохранения и закрытия файлов или работающих приложений.
	О служит для выключения блока управления.
Основная рабочая панель	Содержит клавиши Меню 📜 , DIST 🎧 и
	Видоискатель 💮 .
	Эти клавиши отображаются при работе всех приложений.
Поле эскиза, заменяемое видоискателем	Здесь отображаются измеренные точки, линии и площади, а также положение прибора 3D Disto относительно измеренных точек – либо в горизонтальной, либо в развернутой/вертикальной плоскости.
Видоискатель, заменяемый полем эскиза	Показывает непрерывный видеопоток 3D Disto, используемый для точного наведения на заданные точки на больших расстояниях, до 50 м, и съемки изображений.

Элемент	Описание		
Поле результирующих	Здесь отображаются все результаты, а именно, расстояния, высоты, уклоны, площади, углы и соответствующая клавиша		
значений	выбора типа результирующих значений, например 🧟. Используйте эту клавишу для переключения между типами результирующих значений. Прикосновение к полю результата позволяет открыть калькулятор.		
Панель инструментов	Содержит клавиши для конкретных приложений.		
Строка состояния	Здесь отображается масштаб/степень увеличения изображения, состояние соединений и аккумуляторов, время, режим исполняемой функции, дополнительная информация.		
«Песочные часы»	символ появляется в случае выполнения процесса. Например, в процессе самовыравнивания прибора, измерения, сохранения или экспорта данных. Подача клавишей каких-либо команд кроме отмены процесса не предусмотрена.		

4.1.2 Основная рабочая панель

Описание основной рабочей панели

Кнопки	Описание
!!!!	Открывает меню для запуска приложений или задания параметров.
DIST	Запускает процесс измерения или разметки точек.
(Открывает, закрывает и блокирует видоискатель.

4.1.3 Панель инструментов

Описание панели инструментов

Кнопки	Описание	Кнопки	Описание
+	Сложить	12 12	Переключение между панелями инструментов
-	Вычесть	۲	Включение режима площади или объема
=	Генерирование результатов или замкнутых многоугольников	\langle	Отмена или восстановление последней команды
• • •	Переход на одну точку назад	Ŵ	Очистка значений функций
•••	Переход на одну точку вперед		

4.1.4 Значки и символы

Общие символы строки состояния

Значок	Описание
	Указывает остаточный заряд батареи блока управления
	Указывает остаточный заряд батареи прибора 3D Disto
<u> </u>	Указывает на USB-соединение между блоком управления и прибором 3D Disto
<u>0.5 m</u>	Масштаб поля эскиза и клавиша изменения степени увеличения
23	Указывает степень масштабирования/увеличения видоискателя
L.	Указывает на источник питания блока управления – сеть или прибор 3D Disto
₽	Указывает на то, что прибор 3D Disto подключен к сети
(KX	Указывает на наличие связи с беспроводной сетью
닏	Указывает, что датчик наклона выключен

3D Disto, Пользовательский интерфейс

Разные символы в окне результирующих значений

Значок	Описание
	Расстояние по горизонтали
	Наклонное расстояние
⊻ ◢	Высота, разность высот
\checkmark	Угол влево
\triangleright	Угол вправо
2	Наклон
A	Горизонтальная/наклонная площадь
(2) (2)	Периметр горизонтальной/наклонной площади
E E	Высота объема/высота наклонного объема
(1) (2) (2)	Объем/наклонный объем

Символы результатов сканирования помещения

Значок	Описание
	Площадь круга
▼	Высота точки
Ю	Длина окружности
Ø	Диаметр
	Площадь сканирования
ť	Периметр сканирования
	Сканируемый объем

Символ результатов проецирования

Значок	Описание
•	Расстояние от точки до плоскости

3D Disto, Пользовательский интерфейс

Символы	Значок	Описание	
результатов использования набора инструментов	+	Расстояние от точки до базовой линии по перпендикуляру	20 Disto, 052
	\$	Расстояние от начальной точки базовой линии до места пересечения с перпендикуляром	30 Date 053

4.2	Пульт дистанционного управления RM100	
Описание	Пульт дистанционного управления RM100 (ИК) имеет пять кнопок, позволяющих поворачивать прибор 3D Disto и выполнять дистанционные измерения или проецирования точек, в зависимости от работающей прикладной программы.	
	Пульт дистанционного управления RM100 не поддерживает работу приложений Набора инструментов.	
Процедура наведения на цель	1. Приблизительное наведение: нажмите и удерживайте ()/)/)/)/) ля разворота 3D Disto. Вращение продолжается, пока удерживается соответствующая кнопка.	
	 Точное наведение: кратко нажимайте / / / / / Д/ Для поворота прибора 3D Disto малыми отдельными приращениями. 	
	3. Измерение: нажмите 🛑.	
(F	Красный светодиод на верхней панели пульта дистанционного управления RM100 мигает при нажатии кнопки, указывая на передачу команд с пульта дистанционного управления на прибор 3D Disto.	

5

(B

Настройка прибора

5.1 Процедура включения

Зарядка аккумуляторных батарей / первое использование

• Для всех аккумуляторных батарей

- Перед первым использованием прибора необходимо зарядить аккумуляторную батарею, поскольку она поставляется с минимальным зарядом.
- Допустимый диапазон температур для зарядки: от 0° С до +40° С. Для оптимальной зарядки мы рекомендуем по возможности заряжать аккумуляторные батареи при низкой температуре окружающей среды от +10° С до +20° С.
- Нагрев батареи во время зарядки является нормальным эффектом. При использовании зарядных устройств, рекомендуемых Leica Geosystems, невозможно выполнять зарядку при слишком высокой температуре батареи.

• Для ионно-литиевых аккумуляторных батарей

- Для новых батарей или батарей после длительного (более трех месяцев) хранения, во избежание их повреждения, рекомендуется один раз полностью выполнить цикл зарядки-разрядки.
- Для ионно-литиевых батарей достаточно одного цикла зарядки-разрядки.
 Этот процесс рекомендуется также выполнить, если емкость батареи, указываемая на зарядном устройстве или на приборе Leica Geosystems, значительно отличается от потенциальной емкости батареи.

Использование аккумуляторных батарей и их разрядка

- Батареи способны функционировать при температуре от минус 10 °C до плюс 50 °C.
- Низкие рабочие температуры снижают работоспособность, а высокие уменьшают общий срок службы батарей.
- Температура разрядки батарей от минус 10 °C до плюс 50 °C.

Установка и снятие аккумуляторных батарей

А Предупреждение

Ì

Использование батарей другого типа или снятие гнезда батареи с прибора 3D Disto или блока управления не допускается. Для замены батареи обращайтесь к вашему дистрибьютору или представителю Leica Geosystems.

Прибор рекомендуется во всех случаях защищать от прямого солнечного света и избегать колебаний температуры окружающего воздуха.

 Пошаговая
 Следующее описание предполагает установку прибора 3D Disto на штативе,

 настройка
 однако его также можно поставить на плоскую поверхность, например, пол или стол.

20 Dete, 012

- Установите штатив в месте, подходящем для измерения требуемых точек, и отрегулируйте его ножки до удобной рабочей высоты.
- 2. Установите 3D Disto на штативную головку. Затяните центральный винт штатива.
- 3. Выставьте 3D Disto по круглому уровню, регулируя высоту ножек штатива.
- 4. Нажмите кнопку 🌔 для включения прибора.

 Начнется самовыравнивание 3D Disto: если наклон, контролируемый датчиком наклона, менее 3°, прибор автоматически выравнивает свое положение.

Информацию о состоянии наклона см. в разделе «Описание кнопок и светодиодов».

- 6. Включите блок управления нажатием кнопки 🕐.
- 7. При первом Диспетчер файлов 奋 включении блока ÌΞ (current measurement) управления открывается Ľ следующий экран: 101021 001 measurement) DIST (B Для выключения блока управления нажмите кнопку **b**. 15:23
- 8. Выберите язык.

Выберите формат времени (23:59/11:59). Введите дату и время. Выберите единицы измерения наклона, расстояния и угла. Выберите разделитель десятичной части.

9. Для продолжения нажмите кнопку 🧹

10. Открывается следующий экран:

- 11. Выберите вариант соединения:
 - Прибор 3D Disto подключен через кабель USB.
 - Прибор 3D Disto подключен через беспроводную связь.
 - Прибор 3D Disto не подключен.
 - ПК подключен через кабель USB.

Для подключения 3D Disto через кабель подсоедините кабель USB и нажмите

кнопку

Рекомендуется подключать кабель USB до включения 3D Disto, в противном случае вследствие возможного изменения положения прибора может запуститься процедура самовыравнивания.

Не используйте удлинители кабеля USB, оснащенные адаптером. Следует использовать только кабель Leica Geosystems из комплекта поставки.

Для подключения по беспроводной связи нажмите кнопку

подключение не удалось, подключите прибор через кабель USB, как описано выше, и измените канал беспроводной связи в пункте Меню » Устройство » Канал беспроводной связи. Затем повторите попытку подключения по беспроводному каналу с помощью команды Меню » Устройство » Подключить 3D Disto.

Если соединение нестабильно, измените канал беспроводной связи.

Для передачи данных в ПК или от него подключите блок управления к ПК с

помощью кабеля USB и нажмите

. Подробней см. «5.4.4 Передача

данных».

Если

12. Если выровнять 3D Disto невозможно, всплывает сообщение, и в строке состояния начинает мигать иконка 2. Выровняйте 3D Disto или отмените процедуру выравнивания.

Только для опытных пользователей:

Если датчик наклона выключен, система не компенсирует наклон 3D Disto. Все результаты, относящиеся к физически горизонтальной плоскости, например наклон, вертикальные и горизонтальные расстояния, углы и объемы, теперь будут относиться к наклонному горизонту лазерного блока. Только наклонное расстояние между двумя точками измерений не зависит от настройки датчика наклона.

Если на прибор воздействует вибрация, например при работе на стройплощадке, а также при его размещении на неустойчивом или подвижном основании, может оказаться полезным отключение датчика наклона. При этом можно завершить почти все измерения, чтобы впоследствии «выровнять» экспортированные данные в программном обеспечении САПР.

(P

5.2 Помощник

В программном обеспечении предусмотрен помощник, направляющий вас при выполнении измерительных задач с помощью иллюстрированных всплывающих окон. Если помощник не требуется, его можно отключить через Меню » Настройки » Помощник.

Помощник и значки Если помощник выключен, в строке состояния все еще будут отображаться значки поддержки поддержки, указывающие на работающие приложения и подсказывающие необходимые действия пользователя.

Конфигурация прибора и настройки меню

Конфигурация прибора

5.3

Все параметры экрана настройки можно также изменить через меню: Выберите **Меню** » **Устройство**.

- Подключить 3D Disto для подсоединения по беспроводной сети, кабелю USB или отсоединения блока управления.
- Беспроводной канал связи для переключения между различными каналами, если связь не устанавливается.
- Подключить ПК для разрешения передачи данных.
- Дисплей для изменения параметров дисплея.

- Датчик наклона для активации/деактивации датчика наклона.
 - Выберите Включено при работе на стройплощадке с частыми ударами и вибрацией или Включено (высокая точность), если таких факторов нет.
- Защита от воровства для защиты прибора с помощью ПИН-кода.
- Калибровка для проверки и регулировки прибора. Подробней см. «9 Поверки и юстировки».
- Программное обеспечение для обновления программного обеспечения, проверки версии программного обеспечения на блоке управления и 3D Disto или ввода/активации лицензионного ключа программного обеспечения.

Параметры меню Выберите Меню » Настройки. Станут доступны следующие параметры:

- Радиус действия для определения зоны вокруг точки/линии. Этот параметр содержит список точек, расположенных близко друг к другу, что позволяет упростить их выбор.
- Помощник для активации/деактивации помощника.
- Единицы измерения для изменения единиц измерения.
- Текст приветствия, например, для ввода названия компании.
- Дата и время для изменения параметров даты и времени.
- Язык для выбора языка интерфейса программного обеспечения.
- Импорт/Экспорт для изменения формата, координат и разделителя списков.
- В приборе предусмотрена функция Сброса. Для восстановления заводских настроек и стирания памяти прибора следует выбрать функцию меню Восстановить заводские настройки и подтвердить выбор.

При этом также теряются все пользовательские настройки и сохраненные значения.
5.4 Управление данными

5.4.1 Общие сведения

Диспетчер файлов Экран «Диспетчер файлов» используется для администрирования файлов измерений, фотографий, контрольных точек и передачи данных.

Описание кнопок

Кнопки	Описание	Кнопки	Описание
	Закрытие папки/ Диспетчера файлов	6)	Просмотр выделенного элемента. Деактивировано на уровне папки проекта.
Ĩ	Создайте папку и введите ее имя (не более 15 символов). По умолчанию в качестве имени папки используется дата и идентификатор.	*	Импорт данных
•	Прокрутка назад		Экспорт данных
•	Прокрутка вперед	III	Переименование файла или папки
\checkmark	Открытие выбранного файла или папки	Ŵ	Стирание выбранного файла, папки, папки памяти импорта и экспорта

Кнопки	Описание	Кнопки	Описание
12 12	Переключение между панелями инструментов]+	Переход на уровень родительской папки или закрытие Диспетчера файлов

5.4.2 Диспетчер файлов

Описание

Для запуска Диспетчера файлов нажмите Меню » Диспетчер файлов.

Для некоторых приложений Диспетчер файлов запускается автоматически.

Все файлы измерений отображаются с индивидуальными значками, зависящими от их типа:

Кнопки	Описание	Кнопки	Описание
E	Стандартные файлы измерений	()	Открытие файла / временного файла
	Измерение площади		Файл сканирования помещения
ß	Измерение объема		Файл проектора

5.4.3 Администрирование фотографий и контрольных точек

Описание

Фотографии и контрольные точки хранятся в отдельных папках.

- Для открытия папки с фотографиями нажмите кнопку 📷, а затем 🧹 .
- Выберите фотографию кнопками
 / > и нажмите кнопку / для открытия файла.
- Для просмотра фотографии нажмите кнопку 👁.
- Для удаления выбранной фотографии или всех фотографий нажмите кнопку
 .
- Для выхода из галереи нажмите кнопку [] -

5.4.4	Передача данных
<u>ک</u>	Хотя допускается использование и других карт памяти USB, но Leica Geosystems рекомендует использовать карты памяти USB промышленного стандарта Leica и не несет ответственности за потерю данных или другие ошибки, возникшие вследствие использования других карт, кроме Leica.
Импорт данных	Некоторые приложения допускают импорт файлов DXF или файлов табличных форматов. Перед импортированием необходимо подготовить данные на ПК. Импортируются только точки, а не линии. Источником данных может быть ПК или подсоединенная к блоку управления карта памяти USB.

Перед импортированием файлов DXF удалите из них несущественные данные, такие как рамки, логотипы, координаты или стрелки ориентации.

Кабель USB

 Для импортирования из ПК соедините ПК и заряженый блок управления кабелем с разъемом Micro-USB.

2. При необходимости активируйте связь с ПК нажатием кнопки 😽 на экране

настройки. Теперь блок управления полностью контролируется подсоединенным ПК.

- ² Если блок управления не соединен кабелем USB с 3D Disto, связи с ПК не будет.
- 3. Если связь не работает, выберите Меню и Подключить к ПК.
- 4. После установления связи на экране ПК всплывет окно с папкой Импорт.
- 5. Скопируйте файлы из ПК в папку Импорт блока управления и закройте окно.
- Отсоедините блок управления нажатием кнопки Безопасное извлечение устройства на ПК или кнопки во всплывшем окне блока управления.
- 7. Откройте Диспетчер файлов и нажмите кнопку р. Отображается список

доступных файлов DXF. Выберите файл и нажмите кнопку

Модуль памяти USB

- 1. Для импорта с карты памяти USB вставьте ее в ПК и сохраните файлы DXF в папке Импорт на ней. Извлеките карту памяти USB из ПК.
- 2. Установите карту памяти USB в блок управления.

- 3. Откройте Диспетчер файлов. Нажмите р. Выберите файл и нажмите 👞
- 4. По завершении операции извлеките карту памяти USB.

Варианты программного обеспечения 3D Disto для Windows

- 1. Сохраните файл DXF в папку Импорт каталога Мои документы/Leica Geosystems/3D Disto.
- 2. Откройте Диспетчер файлов. Нажмите ኩ. Выберите файл и нажмите 💧

Экспорт данных Экспорт данных запускается в окне Диспетчер файлов.

Для сокращения времени экспортирования выберите только те файлы, которые действительно требуются.

Кабель USB

 Откройте Диспетчер файлов, выберите папку или файл и нажмите

кнопку 📄

2. Нажмите • В раскрывающемся

меню. Соедините запитанный блок управления и ПК кабелем с разъемом Micro-USB.

- 3. Если связь не работает, выберите **Меню** » **Устройство** и нажмите кнопку **Подключить к ПК**.
- После успешного подключения на экране ПК всплывает окно с папкой Экспорт.
- 5. Скопируйте файлы на ПК и закройте окно.
- 6. Отсоедините блок управления нажатием кнопки **Безопасное извлечение устройства** на ПК или кнопки во всплывшем окне блока управления.

Модуль памяти USB

1. Для записи данных на карту памяти USB установите ее в блок управления.

- 2. Откройте Диспетчер файлов, выберите папку или файл и нажмите кнопку
- 3. Нажмите 🔸 в раскрывающемся меню.
- 4. По завершении операции извлеките карту памяти USB.
 - Если подать команду экспорта в Диспетчере файлов до установки карты памяти USB, никакие данные не будут скопированы на карту, если только не повторить команду экспорта.

Варианты программного обеспечения 3D Disto для Windows

- 1. Откройте Диспетчер файлов, выберите файл и нажмите кнопку 📄
- Экспортируемые данные переносятся в папку Экспорт каталога ПК Мои документы/Leica Geosystems/3D Disto.

5.4.5 Экспортированные файлы

Экспортированные При нажатии кнопки 📄 генерируется пакет экспортируемых файлов для целей файлы документирования или дальнейшей обработки:

- масштабированный рисунок 2D DXF для документирования и печати, включая информацию о проекте, все измерения и различные представления;
- Файл DXF 2D (X; Y), масштаб 1:1;
- Файл DXF 3D (X; Y; Z), масштаб 1:1;
- Файл CSV: редактируемый, общий табулированный формат, содержащий список всех измерений на графике;
- Файл ТХТ: все результаты представлены в редактируемом формате ASCII. Содержимое аналогично файлу CSV;
- Файлы JPG фотографий и контрольных точек.

Процедура экспорта применяет к экспортируемым координатам заданные единицы расстояния. Данные настройки могут быть изменены в любое время перед выполнением экспорта.

Настройки импорта/экспорта в меню позволяют задавать координаты первой измеренной точки для каждого приложения. Данная настройка должна быть выполнена перед измерением первой точки нового проекта (например, нового сканирования); эти настройки не могут применяться к ранее полученным данным.

5.5

Калькулятор

Использование калькулятора

1. Для запуска калькулятора нажмите кнопку «результат» в окне результата.

- 2. Можно также выбрать Меню » Калькулятор.
- 3. Всплывает окно со следующей клавиатурой:

- 4. Функция памяти позволяет складывать или вычитать результаты измерений.
 - Нажмите МС для очистки памяти.
 - Нажмите MR для извлечения значения из памяти.
 - Нажмите М- для вычитания отображаемого значения из значения в памяти.
 - Нажмите М+ для прибавления отображаемого значения к значению в памяти.

Для сохранения определенного значения в памяти: очистите память щелчком кнопки **MC**, введите значение и нажмите кнопку **M**+. Чтобы сохранить это значение с отрицательным знаком нажмите кнопку **M**–. 5. Чтобы снова закрыть это окно, нажмите кнопку Отмена.

Ē

После закрытия окна результат вычислений не сохраняется в текущем файле измерений.

6 Работа с прибором

Измерения

Описание

6.1

Прибор 3D Disto представляет собой комбинацию точного лазерного дальномера (LDM) и датчиков положения. Наведение по видимому красному лазерному лучу позволяет измерять расстояние между 3D Disto и целью, а также расстояния до цели в горизонтальном и вертикальном направлениях. Выполняемые измерения позволяют выявлять связи между различными целями, такие как горизонтальные, наклонные и вертикальные расстояния для определения размеров помещений, углов между стенами, площадей, объемов, точек отвеса или других характеристик.

Прибор 3D Disto позволяет выполнять измерения и наведение даже в таких сложных условиях, как большие расстояния, недоступные цели или яркий окружающий свет. Встроенный датчик наклона обеспечивает измерения относительно истинного горизонта или истинной линии отвеса, определяемых силой тяжести.

6.2 Видоискатель Описание Прибор 3D Disto оснащен встроенной камерой. Для ее использования следует нажать кнопку , при этом изображение с камеры выводится непосредственно на дисплей блока управления. Благодаря перекрестию на изображении видоискателя точность наведения и измерения обеспечивается даже если лазерный луч не виден, например, при больших расстояниях или ярком окружающем свете. Изображение можно увеличить до восьми раз с помощью цифрового масштабирования. Это особенно полезно при измерении поверхностей с большим количеством деталей при солнечном свете.

Пример экрана видоискателя с первой и второй панелью инструментов:

Пошаговая инструкция по использованию видоискателя 1. Для включения видоискателя нажмите кнопку 💮 . Второе нажатие кнопки

вызывает переход в режим блокировки. После третьего нажатия система разблокируется и видоискатель закрывается.

(3) Символ замка на кнопке указывает на активный режим блокировки.

2. Наведение: предусмотрено несколько способов наведения на точку измерения:

- Наведение экранными кнопками со стрелками: для быстрого поворота 3D Disto удерживайте кнопки нажатыми, для шаговых поворотов нажимайте кнопки кратковременно.
- Нажатие и измерение: нажмите точку на экране. Лазер повернется в эту точку автоматически.
- Наведение джойстиком: активируется продолжительным нажатием в центре перекрестия. В центре отображается красная точка. Переместите стилус по экрану для поворота 3D Disto в этом направлении, пока не появится красная стрелка. Чем длиннее красная стрелка, тем быстрее поворачивается 3D Disto.

Для увеличения или уменьшения изображения нажмите кнопку € или
 Предусмотрено четыре уровня масштабирования. Текущее значение отображается в строке состояния.

- 4. Для регулирования яркости камеры нажмите кнопку 💢.
- Чтобы отобразить или скрыть все точки измерения, нажмите кнопку Рядом с выбранной точкой всегда указывается ее номер.
- Для измерения скрытых точек нажмите кнопку Выберите инструмент смещения во всплывающем окне:

- Вертикальное смещение: измерение одной точки на произвольной вертикальной мишени.
- Индивидуальное смещение: измерение двух точек на рейке или прочих металлических конструкциях.
- Линейка смещения: измерение двух точек на линейке точек смещения 3D Disto.

При этом последовательность действий подсказывает помощник.

- (B)
 - Инструмент вертикального смещения доступен до тех пор, пока пользователь не разблокирует его.

7. Чтобы сделать фотографию для целей документирования, нажмите кнопку

О. Фотографии сохраняются вместе с данными об имени, номере точки, дате и времени.

 Если в помещении темно, можно задать режим отображения края в видоискателе, для чего нажмите кнопку . При этом выделяются черным цветом края и углы фотографии. Данный режим имеется только в версии программного обеспечения для Microsoft Windows.

9. Нажмите кнопку 🧊 для выбора между различными командами поворота:

- Поворот на 90° вправо.
- Поворот на 90° влево.
- Поворот на ?°: введите горизонтальный угол, на который следует повернуть 3D Disto.
- Горизонт: 3D Disto устанавливается в горизонтальное положение (уклон 0%).
- Вертикаль: этот параметр можно использовать для построения вертикали точно над заданной точкой. Просто нанесите на пол метку в виде крестика. Линии крестика должны находиться точно под углом 90° друг к другу и быть достаточно длинными, чтобы их было видно при установке прибора над ним. Используйте для центровки метки 90° на 3D Disto.

Следите за вертикальными и горизонтальными отклонениями при перемещениях. Не используйте команды поворота для установки прибора в вертикальное или горизонтальное положение. Используйте вместо этого комплект инструментов.

6.3 Алгоритм измерения

Описание

Приложение «Измерить» позволяет определять горизонтальные, наклонные и вертикальные расстояния, высоты, углы, площади, объемы, уклоны и периметры как внутри помещений, так и снаружи зданий и объектов.

например, для получения размеров помещения следует выполнить следующие шаги:

- 1. Включить систему, как указано в разделе «5.1 Процедура включения».
- 2. Отображается

следующий экран:

3. Чтобы навести прибор на первую точку, например, угол, нажмите кнопку 🕇

и воспользуйтесь кнопками со стрелками или другим способом, описанным в разделе «6.2 Видоискатель», чтобы переместить лазерную точку в требуемое положение.

В процессе наведения следите за тем, чтобы лазерный луч не расщеплялся вдоль углов или краев, поскольку это может привести к ошибочным результатам измерения.

Если вследствие острого угла падения луча на стену лазерная точка превращается в линию, в качестве результата измерения система принимает центр линии.

При измерении в направлении прозрачных жидкостей, например воды, а также незапыленного стекла, пенополистирола или аналогичных полупроницаемых поверхностей возможны ошибки. При измерении неотражающих или темных поверхностей может увеличиться время измерения.

4. Для измерения нажмите 👧. Точка измерения отображается в области

эскиза.

Положение символа 3D Disto на эскизе меняется в точном соответствии с точкой измерения. Первая точка измерения всегда отображается на левой стороне области эскиза. 5. Наведите прибор на 2.400m 🚄 Измерить 奋 Έ вторую точку и выполните действия 3. +и 4. Первая и вторая точки измерения -DIST соединяются линией. =• • • ▶▶•

0.5 m

L C 12:19

6. После измерения

третьей точки она соединяется с первой точкой предлагаемой линией. Выбранная линия всегда отображается более жирной со стрелкой в направлении измерения.

7. Продолжайте аналогичным образом для измерения следующих точек или

нажмите кнопку 🚍 для замыкания/закрытия многоугольника.

В некоторых особых случаях предлагаемая системой линия не отображается. Замыкать многоугольники с выводом результатов можно также путем прочерчивания стилусом соединительной линии между двумя точками. Для измерения высоты помещения выберите точку пола в области эскиза. Затем наведите прибор и измерьте угол на потолке над ней.

Обратите внимание, что на эскизе указывается проекция на плоскость пола. Точки, измеренные на полу и потолке, могут накладываться друг на друга. Для выбора точек и результатов используйте кнопки •<< или •>•.

- 9. Для измерения потолка продолжайте аналогичным образом.
- 10. Для отмены последней команды нажмите кнопку 🦳
- 11. Для повтора последней команды нажмите кнопку 🔼
- 12. Для стирания измерений и результатов используйте кнопки 🔫 или 🍉 и 🎬 .
- 13. Для выбора вариантов сохранения, очистки экрана и прекращения измерений

без сохранения нажмите кнопку

P Файлы измерений удобно хранить в различных папках. чтобы объем данных в одной папке не превышал некоего разумного предела, допустимого для работы и экспорта.

6.4	Сенсорный экран в области эскиза
Выбор элементов	Любой элемент можно выбрать пальцем или стилусом. Многоугольники, состоящие из добавленных или вырезанных линий, невозможно выбрать прямым прикосновением.
Черчение линии между	- Эта функция используется для определения результатов, а не для черчения линии.
произвольными точками	Нажатием кнопки 😑 на панели инструментов можно принять только предложенную системой линию.

3D Disto 047

- 1. Выберите точку.
- 2. Прикоснитесь к экрану пальцем или стилусом и сдвиньте его к нужной точке.

между этими двумя точками отображаются в окне результатов.

6.5 Сложение и вычитание (P В процессе измерения и после него можно применять к выбранным элементам действия сложения и вычитания. Можно складывать следующие значения: горизонтальные расстояния: наклонные расстояния; высоты (в некоторых случаях). Результаты измерения плошади и объема можно складывать или вычитать через память калькулятора. Сложение и 1. Выберите элемент пальцем, стилусом или кнопками • < / >>>. вычитание после 2. Нажмите кнопку + или - для сложения или вычитания. В строке состояния пошагового отображается соответствующий символ. Первая выбранная линия или область измерения выделяется черной меткой. Выберите следующий элемент и нажмите кнопку + или - для повторения операции сложения/вычитания или кнопку = для закрытия суммы и/или

операции сложения/вычитания или кнопку — для закрытия суммы выхода из функции сложения/вычитания.

105

3D Disto. Работа с прибором

3D Disto, Работа с прибором

- 2. В области эскиза появляются две точки, соединенные линией.
- Нажмите кнопку + или для сложения или вычитания. В строке состояния отображается соответствующий символ. Первая выбранная линия выделяется черной меткой.
- 4. Нажмите кнопку 💮 и наведите прибор для измерения следующей точки.

- Нажмите кнопку + или для прибавления или вычитания следующего расстояния (линии) или продолжения измерения, если не требуется прибавлять или вычитать расстояние между точками.
- Продолжайте так до закрытия суммы и/или выхода из функции сложения/вычитания. Затем нажмите кнопку =.

Расчет площади и объема

Описание

6.6

Ì

Прибор 3D Disto способен вычислять площади и объемы. Каждый из этих режимов можно задать в процессе измерения или после него.

- 1. Нажмите кнопку 👔 и затем кнопку 🐟.
- Отображается всплывающее окно, в котором можно выбрать горизонтальную площадь/объем, наклонную площадь/ объем или выйти из приложения. Содержание области эскиза сохранится, но изменится панель

инструментов.

Каждой областью можно управлять как в приложении Горизонтальная площадь, так и в приложении Наклонная площадь.
Горизонтальные площади/объемы

Расчет при пошаговом измерении

6.6.1

- Выберите начальную точку в области эскиза или откройте Видоискатель, если область эскиза пуста.
- 2. Наведите прибор и измерьте точку нажатием кнопки (пот.). Видоискатель закрывается, и точка отображается на эскизе.
- 3. Нажмите кнопку 💮 и измерьте следующую точку нажатием 🗛
- Нажмите кнопку <u></u> для определения линии или части области. Выполните измерение и выберите линию. Многоугольник можно замкнуть нажатием кнопки . Его площадь выделяется серым цветом.
- 5. Отображается всплывающее окно с различными параметрами определения высоты: Введите высоту для определения объема, Измерить высоту, Закрыть список.
- 6. Измерить высоту:

Открывается видоискатель, после чего следует навести прибор и измерить

нажатием кнопки 🕠 точку на полу и затем точку на потолке. В окне

результатов отображается значение высоты.

Для измерения можно выбрать любые точки на полу и потолке.

ИЛИ:

7. Введите высоту:

По умолчанию введено значение 0,000 м. Введите требуемое значение и нажмите кнопку **ОК** или **Отмена**.

ИЛИ:

- 8. Отмена: результатом является площадь.
- Для изменения высоты или вычисления объема по выбранной площади нажмите кнопку III и выполните шаги 3. и 4.
- 1. Выберите линию для добавления к площади и нажмите кнопку 🛨 .
 - 2. Продолжайте аналогичным образом для задания всех линий, после чего

нажмите кнопку

- 3. Для вычисления объема выполните шаги с 5. по 9., стр. 109.
- 4. Выйдите из приложения нажатием кнопки

Расчет после пошагового измерения

6.6.2 Наклонные площади

Описание

- Эта опция обеспечивает те же функции, что и приложение «Горизонтальная площадь», однако их результаты отличаются.
- В окне результатов указываются наклонная площадь, наклонные расстояния, наклонный периметр и наклон плоскости.
- Направление наклона указывается стрелкой в наклонной области.

Для наклонных площадей также возможен расчет объема.

7 Приложения

Общие сведения

Описание

7.1

Существует большое количество разных прикладных программ, предназначенных для решения широкого ряда строительных задач и облегчения ежедневной работы.

• Инструменты:

Защищенное лицензией на использование приложение включает **Набор** инструментов со средствами «интеллектуального» измерения и разметки, а также программу **Местоположение**, позволяющую точно и просто проверять и менять местоположение 3D Disto.

• Сканирование помещения:

Предоставляет практические средства измерения размеров помещений, стен, окон, лестниц и других элементов с указанием базовой высоты. Работает в ручном или автоматическом режиме.

• Проектор:

Позволяет отображать сетки или другие схемы на полу, потолке или стенах.

7.2 Набор инструментов

Общие сведения

Помимо стандартных приложений данная программа имеет следующие функции:

- Вертикальная юстировка;
- Наведение;
- Определение уровня;
- Метровая разметка;
- Определение высоты;
- Параллельная линия.

Приложение Набор инструментов предоставляет точные и простые в использовании средства вертикальной юстировки, наведения, определения высоты и создания параллельных линий. После выполнения каждой из задач по разметке соответствующие инструменты требуется выключать и включать снова. Всплывающее окно предлагает продолжить работу с прежней контрольной точкой или определить новую контрольную точку. Данные не сохраняются, их невозможно импортировать или экспортировать. Функция дистанционного управления данными приложениями не поддерживается. 7.2.1

Описание

Вертикальная юстировка

Функция **Вертикальная юстировка** позволяет устанавливать вертикаль от любой верхней или нижней точки, не находясь над ней.

Этот инструмент может быть очень полезен при монтаже гипсокартона.

Пошаговые операции вертикальной юстировки

- 1. Запустите приложение через Меню » Приложения » Набор инструментов.
- 2. Откроется пустой эскиз. Приложение продолжит работу в фоновом режиме.
- 3. Нажмите 🛒 на панели инструментов.
- 4. Включится режим видоискателя. Наведите указатель на точку, от которой

требуется установить вертикаль. Нажмите 🦾

5. Режим видоискателя продолжает работать. Приблизительно определите

ожидаемую вертикаль и нажмите

6. В случае определения вертикали лазер мигает, указывая точное положение.

7. Нажмите 🏠 для выхода из приложения Набор инструментов.

Описание

7.2.2 Наведение

Функция Наведение позволяет размечать точки относительно базовых точек на вертикальных поверхностях.

Этот инструмент может быть очень полезен для подвески осветительных приборов или картин на стенах на одинаковом расстоянии друг от друга.

Используйте эту функцию только при работе с вертикальными поверхностями. На наклонных поверхностях точки разметки отображаются неверно.

Пошаговые операции наведения

- 1. Запустите приложение через Меню » Приложения » Набор инструментов.
- 2. Приложение продолжит работу в фоновом режиме.
- 3. Нажмите 🛒 на панели инструментов.
- 4. Включится режим видоискателя. Наведите прибор на базовую точку на стене.

5. Всплывающее окно предложит ввести значение расстояния вправо или влево от базовой точки. Для нахождения точки слева от базовой точки укажите отрицательное значение. Нажмите **ОК**. чтобы подтвердить значение.

- Введите 0 для разметки точек, имеющих только вертикальное смешение относительно базовой точки.
- 6. Точка лазера мигает, указывая точное положение. Появится всплывающее окно для указания значения смешения по вертикали (= расстояние вверх/вниз от базовой точки). Значение по умолчанию = 0. Для нахождения точки, расположенной ниже базовой точки, укажите отрицательное значение. Нажмите ОК. чтобы подтвердить значение.

- Информацию о возможных сообщениях об ошибках см. в главе «8 Сообщения об ошибках».
- 7. 3D Disto включится и укажет надлежащее положение.
- 8. Точка лазера мигает, указывая точное положение.
- 9. Нажмите ______ для выхода из приложения Набор инструментов.

7.2.3

Описание

Определение уровня

Функция Определение уровня сохраняет точку лазера на одном уровне при горизонтальном повороте 3D Disto.

Эта функция может быть очень полезной для монтажа подвесных потолков или подвески картин на одном уровне на стенах.

Пошаговые операции определения уровня

- 1. Запустите приложение через Меню » Приложения » Набор инструментов.
- 2. Приложение продолжит работу в фоновом режиме.
- 3. Нажмите 🛒 на панели инструментов.
- 4. Включится режим видоискателя. Наведите прибор на базовую высоту на

5. Режим видоискателя продолжает работать. Ориентировочно направьте лазер

на предполагаемую точку разметки и нажмите _____. Точн

. Точка лазера мигает,

указывая точное положение по высоте.

- Информацию о возможных сообщениях об ошибках см. в главе «8 Сообщения об ошибках».
- 6. Нажмите 🏠 для выхода из приложения Набор инструментов.

Описание

7.2.4 Метровая разметка

Функция **Метровая разметка** выполняет измерение относительно отметки прибора или базовой высоты и позволяет отмечать любою требуемую высоту.

Эта функция очень полезна для создания разметки на определенной высоте в нескольких точках помещения или разметки высоты на нескольких уровнях здания.

Пошаговая метровая разметка

- 1. Запустите приложение через Меню » Приложения » Набор инструментов.
- 2. Приложение продолжит работу в фоновом режиме.
 - 3. Нажмите 🛫 на панели инструментов.
 - 4. Всплывающее окно предложит ввести и отметить базовую высоту.
 - 5. Включится режим видоискателя. Наведите прибор на базовую точку на стене.

- 6. Всплывающее окно предложит ввести абсолютную высоту для разметки.
- 7. Включится режим видоискателя. Приблизительно наведите точку лазера в

предполагаемое место отметки абсолютной высоты на стене. Нажмите

 Точка лазера мигает, указывая точное положение отметки абсолютной высоты.

- Информацию о возможных сообщениях об ошибках см. в главе «8 Сообщения об ошибках».
- 9. Нажмите 🚹
 - для выхода из приложения Набор инструментов.

7.2.5

Определение высоты

Описание Функция Определение высоты позволяет определять высоту объекта, которую невозможно измерить непосредственно.

Эта функция может быть очень полезна для измерения высоты деревьев или линий электропередачи.

Пошаговое определение высоты

- 1. Запустите приложение через Меню » Приложения » Набор инструментов.
- 2. Нажмите 📈 на панели инструментов.
- Включится режим видоискателя. Наведите лазер на базовую точку и выполните измерение на таком горизонтальном расстоянии от объекта, на котором будет выполняться непрямое измерение его высоты.

- После определения базовой точки не перемещайте 3D Disto слишком далеко в горизонтальной плоскости с места, где производился замер. В противном случае результаты измерений будут неверными.
- 4. Окно видоискателя останется открытым, а на дисплее появится отмеренная базовая точка.
- 5. Как можно точнее наведите лазер на точку, высоту которой требуется измерить. Разница между высотой измеряемой и базовой точки отображается и обновляется в реальном режиме времени в окне результатов.
- 6. Закройте видоискатель и приложение.

7.2.6

Описание

Параллельная линия

Функция **Параллельная линия** позволяет размечать линии параллельно базовым линиям на стенах, полах или наклонных поверхностях.

Эта функция может быть очень полезной для выравнивания плитки или профилей гипсокартона.

Пошаговая разметка параллельных линий

- 1. Запустите приложение через Меню » Приложения » Набор инструментов.
- 2. Нажмите ||| на панели инструментов.
- 3. Включится режим видоискателя. Наведите лазер и выполните измерения в начальной и конечной точке базовой линии
- 4. Всплывающее окно предложит ввести расстояние до параллельной линии, отмечаемой справа или слева от базовой линии. Нажмите ОК. чтобы подтвердить введенное значение.
- 5. Откроется видоискатель для примерного наведения в точку разметки.

Точка лазера мигает, указывая точное положение на Нажмите параллельной линии.

- Все точки должны отмеряться на одной поверхности.
- 6. Нажмите 🏠 для выхода из приложения Набор инструментов.

7.3 Местоположение

Описание

Функция **Местоположение** позволяет изменять положение прибора 3D Disto. **Контрольные точки** выбираются пользователем и облегчают процедуру позиционирования прибора.

Пошаговая процедура задания контрольного местоположения Чтобы впоследствии продолжить измерения в том же помещении, зафиксировать текущее положение 3D Disto и геометрические характеристики измерений, можно определить и сохранить **Контрольные точки**.

- Для сохранения **Контрольных точек** необходимо предварительно выполнить измерения в двух точках.
- Пометьте и зафиксируйте на стенах, потолке или полу рабочей зоны от трех до пяти самоклеящихся марок. Марки должны быть рассредоточены.

- (B Вместо марки можно использовать любые фиксированные точки: нарисуйте крест на стене. подвесьте на гвозде линейку для смешенных точек и используйте имеюшиеся на ней отметки.
- 2. Нажмите Меню » Приложения » Местоположение » Контрольное местоположение.
- 3. Включится режим видоискателя. Наведите лазер как можно точнее на Марку

и нажмите 👧 для измерения.

- 4. 3D Disto сделает фотографию и сохранит ее с координатами, помеченными номером и датой.
- 5. Во всплывающем окне появится вопрос Определить больше контрольных точек? Да/Нет.
- 6. Повторите вышеуказанные действия и определите три последние контрольные точки. После сохранения минимум трех точек приложение можно закрыть, нажав Нет.

Дополнительные контрольные точки можно добавлять в любое время. В рабочей области необходимо иметь достаточное количество надлежащим образом заданных контрольных точек. Даже в случае потери одной марки, для успешного восстановления положения прибора в прежней системе координат требуется не менее трех точек.

3D Disto, Приложения

 Пошаговая
 Эта функция позволяет восстанавливать положение 3D Disto в заданной системе

 процедура
 координат, создаваемой посредством процедуры Контрольное

 местоположение, например для завершения ранее начатых измерений.

- (P
- Установите 3D Disto в положение, позволяющее навести лазер на три контрольные точки рабочей зоны и зарегистрировать их.
- 1. Нажмите Меню » Приложения » Местоположение » Пересчитать координаты.
- 2. Всплывающее окно предложит задать допуск. Нажмите **ОК**, чтобы подтвердить значение.
 - Меньши измерен
 - Меньший допуск повышает точность измерений и требует точного наведения и видимости контрольных точек.

3. Если контрольные точки не сохранены в памяти, появится вплывающее окно с сообщением **В памяти недостаточно контрольных точек**.

Если при отсутствии контрольных точек возникает необходимость выполнения измерений в прежней геометрической системе, просто начните измерения с использованных раньше базовых точек. Это первые две точки измерений.

 Если в памяти сохранены контрольные точки, откроется папка. Выберите контрольную точку, нажав ◄ / ▶, или коснувшись экрана. Нажмите [™], чтобы увеличить изображение.

Нажмите 🛃 , чтобы увидеть все контрольные точки, хранящиеся в

- 5. Нажмите 🧹 , чтобы подтвердить точку.
- 6. Включится режим видоискателя. Как можно точнее наведите лазер на

показанный на фотографии указатель и нажмите

памяти.

Первые две контрольные точки должны быть на большом расстоянии друг от друга.

- 7. В случае успеха появится всплывающее окно с вопросом **Определить** следующую контрольную точку? Да/Отмена.
- При выборе Да: откроется папка для выбора следующей контрольной точки. Выполните действия, описанные в пунктах 4.—7. для 2^{-й} и 3^{-й} точек.
 - СЭ В случае успешного определения первых двух контрольных точек 3D Disto поворачивается приблизительно в сторону следующей выбранной контрольной точки. После этого остается только точно навести лазер и нажать Спят.
- После успешного определения трех контрольных точек появляется всплывающее окно с сообщением ОК. Определить больше контрольных точек? Да/Нет/Отмена.
- 10. Нажмите Да, чтобы продолжить, и повторите действия с 4. по 7.
- 11. Для завершения нажмите Нет. В случае успешного завершения во всплывающем окне будут отображаться расстояния между старым и новым положением: XXXм; Высота: XXXм; ОК/Отмена. Нажмите ОК, чтобы принять, или Отмена, чтобы продолжить определение точек.
- 12. Если пересчет координат не удался, появится всплывающее окно с сообщением За пределами допуска! Определить больше контрольных точек? Да/Нет/Отмена. Выполните действия с 4. по 11.
- 13. Нажмите 🏠 для выхода из приложения.

Пошаговая процедура проверки местоположения В случае непреднамеренного смещения 3D Disto, например, в результате толчка, геометрическое положение определенных точек перестанет соответствовать ранее определенным точкам. Для сохранения текущей точности и (или) геометрии измерений необходимо выполнить проверку местоположения прибора.

1. Для включения функции проверки местоположения нажмите Меню » Приложения » Местоположение » Проверка местоположения.

 Если контрольные точки сохранены в памяти выберите пункт Контрольная точка и нажмите . 3D Disto автоматически найдет контрольную точку. Проверьте положение точки лазера относительно марки. Таким же образом продолжите проверку остальных точек.

3. Нажмите 💽 , чтобы закрыть библиотеку Контрольных точек.

Все приложения функции определения местоположения можно закрыть сразу,

.8

Сканирование помещения

Общие сведения

7.4

Это прикладная программа позволяет определять размеры помещений, в том числе определять положения элементов. Для выполнения этих измерений имеется несколько дополнительных функций:

- Базовая высота;
- Автоматическое сканирование;
- Измерение отдельных точек (точек, не соединенных линиями);
- Экспорт координат;
- Функция разворота для переключения между горизонтальным и вертикальным представлением;
- Программные пакеты CAD.

Идеально подходит для измерений в помещениях с непрямыми углами или изогнутыми стенами, недоступными точками, наклонными поверхностями и областями, а также для определения положения элементов, например, розеток или труб.

Измерение в ручном режиме

Пошаговая процедура измерений в ручном режиме

7.4.1

- 1. Нажмите Меню » Приложения » Сканирование помещения.
- Всплывающее окно предложит ввести и определить базовую высоту измерений. Введите значение и нажмите OK.

3. Включится режим видоискателя. Наведите лазер на уровень базовой высоты

5. Дальнейшие измерения выполняйте в соответствии с описанием, приведенным в разделе «6.3 Алгоритм измерения».

Следует обратить внимание на панель инструментов: Э для функций сканирования, Для переключения между горизонтальным и вертикальным представлением, для замыкания многоугольника и для отключения рисования линии.

7.4.2 Режим разворота

Описание

Функция **Сканирование помещения** позволяет переключать вид в поле эскиза между горизонтальным и развернутым/фронтальным вертикальным представлением. Эта функция активна, когда выбрана линия.

Пошаговая процедура работы в режиме разворота

- 1. Выберите горизонтальную линию между двумя точками.
- Нажмите П. Область эскиза изменится из горизонтального в вертикальное представление.

- 3. Отображаются все определенные на вертикальной плоскости точки.
- Для определения положения элементов или измерения размеров стен выполните действия, описанные в главе «6.3 Алгоритм измерения».
- 5. Закончив измерения, верните горизонтальное представление, еще раз нажав клавишу Д.

Режим допускает разворот автоматически созданной линии сканирования.

Программные пакеты САД

Общие сведения

7.4.3

Программные пакеты CAD представляют собой набор инструментов для создания чертежей. Они отображаются в виде подменю в результате длительного нажатия на линию или точку, как показано ниже:

Данное меню может иметь различный вид, зависящий от контекста. При активации значок черчения 😿 в строке состояния становится активным. Становятся доступны следующие инструменты:

Инструмент	Состояние
Окружность	Выбранная точка
Прямоугольник	Только вид спереди, выбранная линия, линия не должна быть вертикальной
Пересечение линий	Только вид сверху, выбранная линия, линия не должна быть вертикальной
Продолжение линии	Линия должна быть выбрана
Смещение точки	Только вид сверху, выбранная линия, линия не должна быть вертикальной
Перпендикулярное пересечение	Только вид сверху, выбранная линия, линия не должна быть вертикальной

 Средство
 Функция построения круга предназначена, главным образом, для изображения окружностей в местах, предназначенных для розеток или отверстий.

 окружностей
 1. Наведите лазер на точку, выполните измерение и

 Наведите лазер на точку, выполните измерение и включите функцию построения окружностей, прикоснувшись к точке в области эскиза, и не отпуская стилус сразу. Откроется меню инструментов САD. Выберите Окружность. Откроется окно. Введите диаметр. ОК/Отмена.

4. В окне результатов отображается радиус, длина окружности и ее размер.

3D Disto, Приложения

 Средство
 Эта функция работает только в режиме развернутого и вертикального

 построения
 представления; она позволяет определять диагональ и строить прямоугольники, например, для измерения окон.

- 1. Нажмите 🔊 для изменения горизонтального представления на вертикальное.
- Определите 1^{-ю} и 2^{-ю} точки диагонали прямоугольника, например окна; включите функцию CAD путем длительного нажатия на линию. Откроется меню инструментов CAD. Выберите Прямоугольник. Появится всплывающее окно с вопросом Преобразовать в прямоугольник? Да/Нет.
- Диагональ превратится в выверенный прямоугольник.

Инструмент Пересечение линий

(B

Инструмент Пересечение линий находит точку пересечения двух линий.

Положение точки пересечения вычисляется по двум координатам в плоскости X-Y. Высота точки пересечения вычисляется по экстраполяции 1^{-й} линии.

- Наметьте и измерьте две точки или выберите имеющуюся линию. Активируйте инструмент CAD путем длительного нажатия на линию в области рисунка. Выберите Пересечение линий.
- 2. Ассистент предложит выбрать вторую линию. Нажмите **ОК.**

Выберите вторую линию. Точка пересечения появится после того, как линия будет выбрана:

	1.878m 🚄	Обмер помещений	奋
] (
	's ^{+1.000m}		
DIST			•44
			⊳⊳•
•	<u>5</u> _ +		~
	2	14.53	12

Инструмент Инструмент Продление линий продлевает линию путем ввода вручную значения **Продление линий** расстояния.

Конечная точка продления линии вычисляется как трехмерная экстраполяция выбранной линии.

- Наметьте и измерьте две точки или выберите имеющуюся линию. Активируйте инструмент CAD путем длительного нажатия на линию в области рисунка. Выберите Продление линий.
- 2. На экране появится окно ввода длины продления. Введите значение и нажмите **ОК**.

Инструмент Инструмент Смещение точки создает новую точку путем задания величины Смещение точки поперечного перемещения вдоль существующей линии, смещения и угла смещения.

(P

Положение смещения точки вычисляется по двум координатам в плоскости Х-Ү. Высота новой точки вычисляется по экстраполяции выбранной линии.

- Наметьте и измерьте две точки или выберите имеющуюся линию. Активируйте инструмент CAD путем длительного нажатия на линию в области рисунка. Выберите Смещение точки.
- 2. Ассистент и всплывающее окно запросят длину перемещения.

Нажмите ОК.

Введите значение и нажмите **ОК**.

4. Чтобы отменить действие, нажмите 💽 Для продолжения нажмите кнопку √ .

5. Ассистент и всплывающее окно запросят ввести угол направления смещения.

Нажмите ОК.

Введите значение и нажмите **ОК**.

7. Чтобы отменить действие, нажмите . Для продолжения нажмите кнопку 🗸 .

8. Ассистент и всплывающее окно запросят величину сдвига.

Нажмите ОК.

Введите значение и нажмите **ОК**.

Инструмент Перпендикулярное сечение

Инструмент Перпендикулярное сечение находит перпендикулярную проекцию точки на выбранную линию.

Положение точки пересечения вычисляется по двум координатам в плоскости

Х-Ү. Высота точки пересечения вычисляется по экстраполяции 1^{-й} линии.

- Наметьте и измерьте две точки или выберите имеющуюся линию. Активируйте инструмент CAD путем длительного нажатия на линию в области рисунка. Выберите Перпендикулярное сечение.
- 2. Ассистент попросит задать выбранную точку. Нажмите **ОК**.

3. Выберите точку.

Точка пересечения появится после того, как точка будет выбрана:

4. Чтобы отменить действие, нажмите 📜 С. После нажатия 🧹 будет

сгенерирована точка пересечения, и будут добавлены линии к существующим точкам.

7.4.4 Автоматическое сканирование

Описание

Данный прибор выполняет автоматическое горизонтальное, вертикальное или наклонное измерение профилей и сканирование поверхностей.

- 1. Нажмите 💥, чтобы начать сканирование.
- Сканирование, пошаговая процедура начала процесса
- Всплывающее окно предложит выбрать из сканирования линией и сканирования поверхности.

Горизонтальное сканирование помещения, пошаговое описание

3. Нажмите ••• , чтобы выбрать

сканирование линией. Всплывающее окно предложит выбрать тип сканирования.

- 4. Нажмите 🗮 для сканирования горизонтальной линией.
- Откроется видоискатель для наведения лазера на начальную точку и выполнения измерений.
- 6. Появится всплывающее окно с предложением выбора направления сканирования вправо/от ... до/влево. Вправо на 360° по часовой стрелке «от и до» в пределах заданного интервала, влево на 360° против часовой стрелки. Выберите один из вариантов, чтобы продолжить.

7. В случае выбора параметра от ... до откроется видоискатель для определения

конечной точки сканирования. Нажмите

 Во всплывающем окне появится предложение задать шаг измерения.
 Выберите интервал и нажмите **ОК** либо перейдите к крайнему правому положению, чтобы ввести

индивидуальные интервалы.

Для получения лучших результатов не выбирайте малые интервалы при сканировании больших расстояний.

- Нажмите ОК. Начнется сканирование. Панель инструментов изменится.
- 10. Для включения камеры нажмите

кнопку 👁. Для разблокирования нажмите кнопку еще раз.

11. Используйте клавишу

Для изменения шага сканирования, пропуска оставшейся части сканируемого участка, продолжения или отмены сканирования.

14. При выборе Да: появляется новая панель инструментов, например для определения недостающих точек с помощью функции DIST или удаления ненужных точек клавишей с символом корзины.

Нажмите • 📢 или >> •, чтобы выбрать точки.

Нажмите Д, чтобы изменить представление и выполнить измерения, например, элементов стены.

Нажмите 📌, чтобы включить процесс упрощения сканирования, автоматически устраняющий расположенные на одной прямой точки.

Нажмите 🗸 , чтобы завершить сканирование.

15. Нажмите 🏠 , чтобы сохранить и закрыть файл с результатами измерений.

Вертикальное сканирование, пошаговое описание

 Нажмите ••••, чтобы выбрать сканирование линией. Всплывающее окно предложит выбрать тип сканирования.

2. Нажмите 🏢

для сканирования вертикальной линией.

- Откроется видоискатель для наведения лазера на начальную точку и выполнения измерений.
- Всплывающее окно предложит выбрать ориентацию сканирования: Перпендикулярно стене или Свободная.

• Перпендикулярно стене

- 1. 3D Disto автоматически обмеряет поверхность рядом с начальной точкой измерения. Дождитесь следующего всплывающего окна.
- Всплывающее окно предложит выбрать направление измерения вверх/от ... до/вниз с последующим указанием шага между точками измерения.

3. Если выбрать вариант от ... до, откроется видоискатель, используемый для

определения конечной точки перед заданием шага измерения. Нажмите

 3D Disto начинает сканирование в начальной точке. Продолжите, следуя указаниям, приведенным в разделе «Горизонтальное сканирование помещения, пошаговое описание» на стр. 156.

• Свободный контур

1. Откроется видоискатель, позволяющий определить точку на

противоположной стене и выполнить измерения. Нажмите

 Всплывающее окно предложит выбрать направление измерения вверх/от ... до/вниз с последующим указанием шага между точками измерения. Если выбрано сканирование от ... до 3D Disto, сканирование будет осуществляться от точки до точки, а не в пределах 360°.

000	Выберите:		
	γ	Ŧ	
	Д.	±.	

3. Продолжите, следуя указаниям, приведенным в разделе «Горизонтальное сканирование помещения, пошаговое описание».

3D Disto, Приложения

Сканирование

наклонных

поверхностей,

пошаговое

описание

1. Нажмите ••• , чтобы выбрать

сканирование линией. Всплывающее окно предложит выбрать тип сканирования.

Выберите 📉 для сканирования наклонной линией.

2. Откроется видоискатель для выполнения измерений начальной точки.

Выполните наводку и нажмите

3. Наведите на конечную точку сканирования и нажмите

4. Продолжите, следуя указаниям, приведенным в разделе «Горизонтальное сканирование помещения, пошаговое описание».

Сканирование наклонных поверхностей не функционирует на горизонтальных поверхностях.

Сканирование поверхности, пошаговое описание

(B)

(B)

(P

1. Нажмите ::: для сканирования поверхности.

- 2. Всплывающее окно предложит выбрать из трех вариантов сканирования: горизонтальное, наклонное и вертикальное. Выберите требуемый вариант в зависимости от того, какую поверхность вы собираетесь сканировать.
- Выберите:
- Используйте вертикальное или горизонтальное сканирование для измерения стен. пола и потолка.
- Наклонное сканирование идеально для проверки ровности любых поверхностей. вне зависимости от их наклона.
- 3. Выберите вариант «точно» или «быстро». Вариант «точно» обеспечивает поиск точного положения каждой точки сканирования. Вариант «быстро» предполагает приоритет малого времени измерения. В обоих случаях точность измерения одинакова.

- 4. Откроется видоискатель измерителя для определения сканируемой области:
 - горизонтальное и вертикальное сканирование: измерьте две кромки (3 точки). Площадь заполняется автоматически;
 - сканирование наклонных поверхностей: измерьте границы сканируемой

области и нажмите для продолжения.

Продолжайте действия, описанные в шагах с 8. по 11. в разделе «Горизонтальное сканирование помещения, пошаговое описание».

Отклонение каждой сканированной точки от контрольной плоскости отображается в окне результатов.

По причинам, связанным с геометрией помещения, вычисление сканированного объема носит приблизительный характер.

7.5 Проектор

Общие сведения Это приложение служит для отображения точек или геометрических сеток на горизонтальной, вертикальной или наклонной (= «свободной») плоскости. Допускается импорт расчетных данных в формате DXF или в табличном виде, а также ввод параметров геометрии вручную.

Отражение точек сетки идеально подходит для монтажа подвесных потолков.

7.5.1	 Последовательность действий 1. Нажмите Меню » Приложения » Проектор. Всплывающее окно предложит выбрать из трех режимов сканирования: горизонтального, наклонного и вертикального. 2. Выберите требуемый вариант, исходя из рабочего пространства. 	
Проектор, начало		
	3. Откроется видоискатель для измерения рабочей зоны.	
Измерение рабочей зоны	 Измерьте все важные объекты, которые вы собираетесь учитывать в дальнейшем (кромки, углы и т. д.) Только для режима горизонтального сканирования: первая измеренная точка определяет уровень, который будет опорным для других. 	
	 Если Доступна, нажмите эту кнопку, чтобы закрыть контур. Затем измерьте другие рассматриваемые точки (только в режиме сканирования наклонной поверхности). Определив все точки, нажмите Для продолжения. 	
	наклонной поверхности). 3. Определив все точки, нажмите 🧹 для продолжения.	

Построение точек

 Всплывающее окно предложит два варианта определения проецируемых точек: в режиме сетки для обычных рисунков и в режиме импорта с использованием собственных файлов в формате DXF или CSV.

Используйте кнопку 💽 в любой момент для возврата к измерению рабочей зоны.

Режим сетки

- 1. Нажмите для начала работы в режиме сетки.
- Появится всплывающее окно с возможностью выбрать вариант Определить новую, Использовать последнюю или Измерить.

Ξ	Построение сетки
	Определить новую
	Использовать последною
	Измерить
	Закрыть список

- 3. Выберите требуемый режим:
 - Определить новую: используйте последующие инструменты для создания геометрии сетки.

- Использовать последнюю: восстановить дизайн последней использовавшейся сетки, введенной в прибор.
- Измерить: выполните требуемые указания для привязки к существующей сетке. Данный вариант позволяет пропустить следующий шаг Юстировка.
- Режим импорта
- 1. Нажмите пля начала работы в режиме импорта.
- 2. Диспетчер файлов покажет все импортированные файлы формата DXF и CSV.

Выберите файл. Нажмите 👁, если хотите проверить содержимое этого файла с помощью программы просмотра.

- Строка заголовка средства просмотра отображает размер файла. Измените настройки расстояния в меню, если масштаб не соответствует рабочей области.
- Чтобы импортировать точки из списка, введите координаты X, Y или Y, X в текстовом редакторе и сохраните файл с расширением CSV. Если импорт работает неправильно, проверьте настройки импорта/экспорта в меню.
- 3. Для продолжения нажмите кнопку 🧹.
- 4. Проецируемые точки отображаются и готовы к согласованию.

Согласование проекта

 Откроется Функция согласования. Проект точек отображается на рабочей области; его нужно передвинуть в требуемое положение. Используйте следующие инструменты:

- 2. Точки и линии можно выделять отдельно касанием пальца или стилуса.
- 3. Сетку можно перемещать вверх, вниз, влево и вправо на экране малыми перемещениями с помощью "1" / "1" / "4" / "4". На экране отображается расстояние по перпендикуляру от выбранной точки сетки до базовой линии. Коснитесь отображаемого расстояния и введите значение.
- 4. Нажмите 12, чтобы открыть дополнительные инструменты выравнивания сетки.
- 5. Нажмите для сброса положения сетки.
- 6. Нажмите одля выравнивания сетки параллельно выбранной линии. Перед использованием инструмента, в случае необходимости, проведите параллельные линии между проектируемыми точками.
- 7. Нажмите 🔬 для поворота сетки на 90°.
- 8. Нажмите 📌 для размещения сетки точно на базовой точке.
- 9. Для продолжения нажмите 🧹.
 - Используйте кнопку <u>Карана</u> в любой момент времени, чтобы вернуться в режим **Дизайн точек**.

Проецирование точек

 В режиме разметки панель инструментов изменяется и позволяет выводить проекцию сетки на поверхность. Используя клавиши со стрелками, выберите точку и

нажмите

Пористые, структурированные или необработанные поверхности создают сложности, если луч лазера не может отражаться в точно в месте точки разметки.

Точки можно выбирать и другим способом – коснувшись стилусом точки на экране или с помощью пульта дистанционного управления. При обнаружении точного положения точка лазера мигает. В области эскиза эта точка выделяется красным цветом.

Для разметки других точек выберите другую точку и нажмите

- 3. Нажмите 🗽 для возврата в программу Функция согласования.
- 4. Нажмите 🟠, чтобы сохранить файл.

(B

Переключение плоскостей

Если точка не может быть спроецирована на потолок, передвиньте лазерный луч на пол перед тем, как нажать кнопку **DIST**. Теперь последующие точки будут проецироваться на пол. Проецируемая поверхность может быть изменена в любое время.

7.5.2	Наведение лазера и разметка с помощью пульта дистанционного управления RM100	
Описание	Пульт дистанционного управления RM100 имеет такие же функциональные возможности, как и другие приложения. RM100 работает только при включенном блоке управления – в противном случае ошибки измерений не отображаются и их нельзя избежать.	
Функциональные возможности кнопок приложения	Красная клавиша : • Нажмите для включения лазера и второй раз для проецирования или определения точки в пределах исходной области.	
Проектор	 Клавиши быстрого ввода команд ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	

Сообщения об ошибках

Сообщения об ошибках и советы

8

Номер ошибки	Совет по устранению
150	Превышен рабочий диапазон.
151	Неправильное измерение.
152	Измените положение 3D Disto или воспользуйтесь линейкой для измерения смещенных точек.
160	Повторите оба измерения, не перемещая линейку между ними.
161	В некоторых случаях использование инструмента «Смещенная точка» невозможно.
170	Если проблема не исчезнет, перезагрузите 3D Disto.
171	Проверьте все устройства, например источник питания или кабели, затем повторите измерения еще раз.
240	Калибровка датчика наклона не выполнена! Точность системы находится под угрозой. Обратитесь к вашему дистрибьютору или представителю Leica Geosystems.
241	Слишком большое отклонение от нуля. Повторите калибровку.
243	Расположите прибор устойчиво. Не дотрагивайтесь до 3D Disto и не поворачивайте его. Повторите калибровку.

Номер ошибки	Совет по устранению
300	Выберите горизонтальную линию.
350	Проверьте поверхность проецирования. Лазер невозможно установить в требуемое положение.
755	Измерение точки невозможно. Попытайтесь измерить из другого положения. Инструмент не работает на горизонтальных плоскостях.
760	Измерение точки невозможно. Введите другие значения. Инструмент не работает на горизонтальных плоскостях.
765	Измерение точки невозможно. Попытайтесь измерить из другого положения или введите другое значение. Инструмент не работает на горизонтальных плоскостях.
800	Импорт или экспорт данных невозможны.
801	Недостаточно свободного пространства на карте памяти USB.
802	Устройство хранения не функционирует должным образом.
803	Проверьте состояние и содержимое файла.
804	Файл или папка защищены от записи или повреждены.
900	Ошибка 3D Disto. Если ошибка повторится, обратитесь к вашему дистрибьютору или представителю Leica Geosystems.
901	Отраженный лазерный луч находится слишком низко.

Номер ошибки	Совет по устранению
902	Отраженный лазерный луч находится слишком высоко.
903	Слишком сильное фоновое освещение.
904	Лазерный луч прерван. Повторите измерение.
950	Для обеспечения точности выполните проверку местоположения!
951	Наклон 3D Disto превышает 3°. Установите прибор горизонтально!
952	Проверьте 3D Disto на предмет препятствий для беспроводной связи или переместитесь в направлении прибора 3D Disto.
953	Проверьте соединения и кабель.
954	Подсоедините кабель или выберите в меню пункт «Беспроводная связь».
955	Температура 3D Disto вне допустимого диапазона.
956	Слишком большая вибрация или непрерывное перемещение.
998	Обратитесь к вашему дистрибьютору или представителю Leica Geosystems.
999	Обратитесь к вашему дистрибьютору или представителю Leica Geosystems.

9	Поверки и юстировки	
9.1	Общие сведения	
Описание	Инструменты фирмы Leica Geosystems разрабатываются, производятся и юстируются для обеспечения наивысшего качества и точности измерений. Однако, резкие перепады температуры, сотрясения и удары способны вызвать изменения юстировок и понизить точность измерений. По этой причине настоятельно рекомендуется периодически выполнять поверки и юстировки. Их можно выполнять на месте, соблюдая описанные далее процедуры. Эти процедуры сопровождаются подробными инструкциями, которым нужно неукоснительно следовать.	
Электронные юстировки	Перечисленные ниже инструментальные погрешности можно поверять и юстировать с помощью электроники: • Смещение перекрестья; • Вертикальный указатель; • Датчик наклона.	
	Все калибровочные настройки могут быть отменены восстановлением заводских настроек.	

ŝ

Все измеряемые угловые размеры корректируются автоматически, если датчик наклона включен, а 3D Disto настроен на угол от 0° до 3°.

Перед выпуском прибора инструментальные погрешности определяются и приводятся к нулю в заводских условиях. Как уже отмечалось, значения этих погрешностей со временем меняются, поэтому настоятельно рекомендуется заново определять их в следующих ситуациях:

- После трудной или длительной транспортировки;
- После долгого хранения;
- Если окружающая температура и температура, при которой проводилась последняя калибровка, различаются более чем на 20°С.

9.2 Смещение перекрестья

3D Disto. Поверки и юстировки

1. Калибровка запускается через Меню » Устройство » Калибровка. Пошаговая

юстировка

- - 2. Нажмите —.
 - 3. Включится режим видоискателя. Поместите метку-указатель на расстоянии > 25 м. Как можно точнее наведите прибор на метку-указатель.

4. Видоискатель не закрывается и отображает красное перекрестье. Как можно точнее переместите перекрестье в центр метки-указателя клавишами-

стрелками. Снова нажмите

- 5. Если результат находится в пределах допуска, появится всплывающее окно с сообщением Определить новые: x=...px; y=...px. Восстановить заводские настройки или Отменить калибровку.
- 6. Выберите Определить... или Восстановить... для выверки перекрестья. В последнем всплывающем окне появится вопрос Вы уверены? Да/Отмена.
- 7. Если Да, появится символ галочки, подтверждающий успешное завершение задания параметров.

9.3 Ошибка вертикального указателя

Проблема Вертикальный указатель не совпадает с вертикальной осью. Это может быть определено по неверному представлению высот или перепад высот измеряемых точек, например, когда средства Набора инструментов выдают ошибки при измерениях.

⁷ Перед калибровкой вертикального указателя рекомендуется выполнить калибровку датчика наклона и следующую за ним калибровку перекрестья! См. «9.4 Калибровка датчика наклона» и «9.2 Смещение перекрестья».

- Установите 3D Disto близко к стене с расположенной под большим углом и хорошо видимой меткой-указателем. Метка должна располагаться, по крайней мере, на 15 метров выше прибора.
- 2. Нажмите 💻 .
- 3. Включится режим видоискателя. Как можно точнее

наведите лазер на цель. Нажмите

5. Снова наведите лазер. Нажмите

- Выберите Определить... или Восстановить... для выверки вертикального указателя. В последнем всплывающем окне появится вопрос Вы уверены? Да/Отмена.
- Если Да, появится символ галочки, подтверждающий успешное завершение задания параметров.

9.4 Калибровка датчика наклона

Проблема

Ошибка датчика сенсора оказывает такое же влияние, как и ошибка вертикального указателя, но зависит от ориентации прибора. Это может быть определено по неверному представлению высот или перепаду высот измеряемых точек, например, когда неверно определяется поворот или вертикаль функции **Установить горизонтально**.

а) Смещение датчика наклона.

(F	Эта калибровка выполняется автоматически. Необходимо убедится в том, что 3D Disto настроен на < 3°.
Юстировка	1. Нажмите 🚥.
пошаговое описание	2. 3D Disto автоматически запустит процесс самовыравнивания: выполняется проверка наклона; прибор выравнивается сам, если наклон < 3°. Появляется всплывающее окно с сообщением Не прикасайтесь к прибору 3D Disto в течение 1 минуты!
	 Если ОК, появится всплывающее окно с сообщением Калибровка завершилась успешно.

Восстановление заводских настроек

Пошаговая процедура восстановления заводских настроек

9.5

- 1. Нажмите 🎮.
- 2. Появится всплывающее окно с сообщением Восстановить заводские настройки всех параметров калибровки? Да/нет.
- 3. При выборе **Да**: происходит восстановление заводских настроек параметров калибровки без дополнительного запроса.

10 Защита прибора (от воровства)

Описание

Прибор может быть защищен с помощью Персонального Идентификационного Номера (ПИН-кода). При активации защиты с помощью ПИН-кода блок управления будет запрашивать код при каждом включении. В случае троекратного ввода неправильного ПИН-кода потребуется ввести персональный код разблокирования (PUK-код), указанный в сопроводительной документации прибора. При правильном вводе PUK-кода ПИН-код устанавливается по умолчанию на «0», и защита прибора ПИН-кодом деактивируется. PUK-код для замены можно получить через вашего представителя Leica

Geosystems.

3D Disto, Защита прибора (от воровства)

Пошаговая активация ПИН-кода 1. Включите блок управления, как указано в разделе «5 Настройка прибора».

- Выберите пункт Меню » Устройство » Защита от воровства. По умолчанию установлено значение Выключено.
 - 3. Для активации функции нажмите Включить.
 - 4. Введите желаемый ПИН-код (от 3 до 8 цифр или букв).
 - 5. Подтвердите изменение нажатием кнопки ОК.

Теперь прибор защищен от несанкционированного использования. Теперь при включении прибора, выходе из режима ожидания или изменении настроек защиты ПИН-кодом надо будет указать ПИН-код.

Пошаговая инструкция деактивации ПИН-кода 1. Включите блок управления, как указано в разделе «5 Настройка прибора».

- 2. Выберите пункт Меню » Устройство » Защита от воровства.
- 3. Введите ПИН-код и нажмите кнопку ОК для подтверждения.
- 4. Для деактивации функции нажмите Выключить.

Теперь прибор не защищен от несанкционированного использования.

S

11 Транспортировка и хранение

11.1

Транспортировка

Переноска прибора в полевых условиях	 При работе с прибором в поле обязательно убедитесь в том, что он переносится: в своем контейнере; или оператором на штативе в вертикальном положении. 		
Перевозка в автомобиле	При перевозке в автомобиле контейнер с прибором должен быть надежно зафиксирован во избежание воздействия ударов и вибрации. Обязательно используйте контейнер для перевозки и надежно закрепляйте его.		
Транспортировка	При транспортировке по железной дороге, на судах или самолетах обязательно используйте полный комплект Leica Geosystems для упаковки и транспортировки, либо аналогичные средства для защиты прибора от ударов и вибрации.		
Транспортировка аккумуляторных батарей	При транспортировке или доставке батарей ответственный за работу с прибором должен проверить соблюдение местных и международных стандартов. Перед транспортировкой рекомендуется связаться с представителями компании, которая будет осуществлять доставку.		
Юстировка в полевых условиях	После доставки или транспортировки инструмента до начала работ необходимо выполнить в поле поверку и юстировку основных параметров, описанных в данном руководстве.		

11.2	Хранение Соблюдайте температурные условия хранения оборудования, особенно в летнее время при его хранении в автомобиле. Обратитесь к разделу «13 Технические характеристики» для получения сведений о температурном режиме. После длительного хранения до начала работ в поле необходимо выполнить поверки и юстировки, описанные в данном Руководстве.			
Изделие				
Юстировка в полевых условиях				
Аккумуляторные батареи	 Щелочные и ионно-литиевые аккумуляторные батареи Обратитесь к разделу «13 Технические характеристики» для получения более подробной информации о диапазоне температур хранения. Для обеспечения минимального саморазряда аккумуляторов их следует хранить в сухом месте при температуре от 0°С до +20°С. При соблюдении этих условий аккумуляторы с уровнем зарядки от 70 % до 100 % их емкости могут храниться в течение года. По истечении этого срока аккумуляторы следует полностью зарядить. Перед использованием длительно хранившихся аккумуляторов (ионно- литиевых) следует выполнить их подзарядку. Обеспечьте защиту аккумуляторов от влажности и сырости. Влажные аккумуляторы необходимо тщательно протереть до их хранения или использования. 			

11.3	Сушка и чистка				
Линзы и крышки 3D Disto	 Сдуйте пыль с линз и корпуса. Ни в коем случае не касайтесь оптических деталей руками. Для протирки используйте только чистые, мягкие и неволокнистые куски ткани. При необходимости можно смачивать их водой или чистым спиртом. Ни в коем случае не применяйте другие жидкости, поскольку они могут повредить полимерные компоненты. 				
Влажность	 Сушить прибор, его контейнер и уплотнители упаковки рекомендуется при температуре не выше 40°С с обязательной последующей протиркой. Не упаковывайте прибор, пока не высушите его полностью. При работе в поле не оставляйте контейнер открытым. 				
Кабели и штекеры	Содержите кабели и штекеры в сухом и чистом состоянии. Проверяйте отсутствие пыли и грязи на штекерах соединительных кабелей.				

12 Техника безопасности

12.1 Общие сведения

Описание Приведенные ниже сведения служат для информирования лиц, отвечающих за прибор, и операторов, непосредственно работающих с прибором, о возможных опасностях и мерах их предупреждения.

Ответственное за прибор лицо должно проследить, чтобы все пользователи понимали и соблюдали эти указания.

12.2 Штатное использование

Допустимое применение

- Трехмерное измерение расстояний, высот, углов, площадей и объемов.
- Ручное и автоматическое измерение размеров помещения.
- Автоматическое измерение контуров.
- Разметка точек и схем, например, с чертежей.
- Создание чертежей.
- Фотографирование.
- Импорт/экспорт данных.
- Администрирование данных.

Запрещенные действия

- Работа с прибором без проведения инструктажа исполнителей по технике безопасности.
- Работа вне установленных для прибора пределов допустимого применения.
- Отключение систем обеспечения безопасности.
- Снятие паспортных табличек с информацией о возможных рисках.
- Открытие корпуса прибора, например, с помощью отвертки, за исключением случаев, специально оговоренных в инструкциях для проведения конкретных операций.
- Модификация конструкции или переделка прибора.
- Работа с прибором, имеющим явные повреждения или дефекты.

- Использование прибора с принадлежностями от других изготовителей без специального предварительного разрешения, полученного у Leica Geosystems.
- Неадекватное обеспечение безопасности на месте проведения работ, например, при измерениях на дорогах или площадках.
- Умышленное наведение прибора на людей.
- Операции по мониторингу машин и других движущихся объектов без должного обеспечения безопасности на месте работ.

Запрещенные действия способны привести к травмам и материальному ущербу. В обязанности лица, отвечающего за прибор, входит информирование пользователей о возможных рисках и мерах по их недопущению. Приступать к работе разрешается только после прохождения пользователем надлежащего инструктажа по технике безопасности.

12.3 Ограничения по использованию

 Окружающие
 Инструмент предназначен для использования в условиях, пригодных для

 условия
 постоянного пребывания человека; он не рассчитан для работы в агрессивных или взрывоопасных средах.

Опасно До начала работ в трудных и потенциально опасных для их выполнения условиях необходимо проконсультироваться с представителями местных органов охраны труда.

12.4	Уровни ответственности				
Производитель прибора	Leica Geosystems AG, CH-9435 Heerbrugg, далее Leica Geosystems, ответственна за поставку продукта, включая руководства пользователя и оригинальные аксессуаров, в полностью безопасном состоянии.				
Другие поставщики аксессуаров для продуктов от Leica Geosystems	Фирмы-поставщики аксессуаров для приборов Leica Geosystems отвечают за разработку и адаптацию таких аксессуаров, а также за применение используемых в них средств связи и эффективность работы этих аксессуаров в сочетании с изделиями Leica Geosystems.				
Лицо, отвечающее за прибор	 Отвечающее за прибор лицо имеет следующие обязанности: Изучить инструкции безопасности по работе с прибором и инструкции в руководстве по эксплуатации. Изучить местные нормы, имеющие отношение к предотвращению несчастных случаев. Немедленно информировать представителей Leica Geosystems в тех случаях, когда оборудование становится небезопасным в эксплуатации. 				
▲ Предупреж- дение	Лицо, ответственное за прибор, должно следить за тем, чтобы прибор использовался в соответствии с данными инструкциями. Это лицо также отвечает за подготовку и инструктаж персонала, который пользуется инструментом, и за безопасность работы оборудования во время его эксплуатации.				

12.5 Риски эксплуатации

Отсутствие инструкций или неадекватное их толкование могут привести к неправильному или непредусмотренному использованию оборудования, что способно создать аварийные ситуации с серьезными человеческими, материальными, финансовыми и экологическими последствиями. Меры предосторожности:

Все пользователи должны следовать инструкциям по технике безопасности, составленным изготовителем оборудования, и выполнять указания лиц, ответственных за его использование.

Осторожно

Постоянно следите за качеством получаемых результатов измерений, особенно в тех случаях, если инструмент подвергся сильным механическим воздействиям, либо был использован нештатным образом или применяется после длительного хранения или транспортировки.

Меры предосторожности:

Необходимо периодически проводить контрольные измерения, поверки и юстировки, описанные в данном Руководстве, особенно после возникновения нештатных ситуаций, а также перед выполнением особо важных работ и по их завершении.

М Предупреж- дение	Во время активной работы, например, при разметке объектов, существует опасность несчастных случаев, связанных с неуделением должного внимания окружению, например, наличию препятствий в виде кабелей. Меры предосторожности: Лицо, ответственное за прибор, обязано предупреждать всех пользователей о возможных опасностях.
▲ Предупреж- дение	Недостаточное обеспечение мер безопасности на месте проведения работ может привести к опасным ситуациям, например, в условиях интенсивного движения транспорта, на строительных площадках или в промышленных зонах. Меры предосторожности: Всегда добивайтесь того, чтобы место проведения работ было безопасным для их выполнения. Придерживайтесь местных норм техники безопасности, направленных на снижение травматизма и обеспечения безопасности дорожного движения.

Если используемые при работе с прибором аксессуары не закреплены надлежащим образом, а прибор подвергается механическому воздействию (например, удары, падение и т. п.), то возникает вероятность повреждения самого прибора и травмирования окружающих.

Меры предосторожности:

При установке инструмента на точке убедитесь в том, что все аксессуары правильно подключены, закреплены и приведены в штатное положение. Старайтесь избегать сильных механических воздействий на оборудование.

Во время транспортировки или хранения заряженных батарей при неблагоприятных условиях может возникнуть риск возгорания.

Меры предосторожности:

Перед транспортировкой или утилизацией прибора необходимо полностью разрядить его батареи. Включите и не выключайте его до полной разрядки батарей.

При транспортировке или доставке батарей ответственный за работу с прибором должен проверить соблюдение местных и международных стандартов. Перед транспортировкой оборудования обязательно свяжитесь с представителями компании-перевозчика.

М Предупреж- дение	Использование не рекомендованных Leica Geosystems зарядных устройств может повредить аккумуляторные батареи. Кроме того, это способно привести к их возгоранию или взрыву. Меры предосторожности: Для зарядки аккумуляторов используйте только рекомендованные Leica Geosystems зарядные устройства.
▲ Предупреж- дение	Сильные механические воздействия, высокая температура и погружение в различные жидкости способно привести к нарушению герметичности аккумуляторов, их возгоранию или взрыву. Меры предосторожности: Оберегайте аккумуляторы от ударов и высоких температур. Не роняйте и не погружайте их в жидкости.
▲ Предупреж- дение	 Выбрасывать разряженные батареи с бытовыми отходами запрещено. Берегите окружающую среду. Сдавайте батареи в пункты утилизации, соблюдая государственные и местные требования. Ненадлежащая утилизация изделия грозит следующим: Возгорание полимерных компонентов может привести к выделению ядовитых газов, опасных для здоровья. Механические повреждения или сильный нагрев аккумуляторов способны привести к их взрыву и вызвать отравления, ожоги и загрязнение окружающей среды.

 При небрежном хранении оборудования оно может оказаться в пользовании случайных лиц, не знакомых с нормами безопасности. В результате могут пострадать они сами и посторонние лица. Существует и вероятность нанесения вреда окружающей среде.

Меры предосторожности:

Не следует выбрасывать отработанные батареи вместе с бытовыми отходами.

Утилизация прибора должна быть выполнена с соблюдением действующих государственных норм и требований.

Жестко ограничивайте доступ к оборудованию случайных лиц.

Информацию об организации сбора и уничтожения отходов можно скачать с домашней страницы компании Leica Geosystems по адресу http://www.leica-geosystems.com/treatment или у местного дилера Leica Geosystems.

 Предупреждение
 Ремонт приборов имеют право выполнять только работники официальных мастерских Leica Geosystems.

12.6	Классификация лазера			
Встроенный дальномер	Leica 3D Disto формирует видимый лазерный луч, выходящий из передней части прибора.			
	Прибор является лазерным изделием класса 2 в соответствии с:			
	 IEC60825-1: 2007 «Радиационная безопасность лазерных изделий». 			
	Лазерные изделия класса 2:			
	Не направляйте лазерный луч себе в глаза и на других людей.			
	Безопасность глаз обычно в достаточной мере гарантируется неосознанными рефлексами, например, морганием.			
А Предупреж- дение	Попадание луча в глаз через оптические приборы (например, бинокль или телескоп) может быть опасным.			
	Меры предосторожности:			
	Не смотрите прямо на лазерный луч через оптические приборы.			
Осторожно	Лазерный луч может быть опасен для глаз. Меры предосторожности:			
	Не смотрите на лазерный луч. Направляйте луч выше или ниже уровня глаз. (особенно, при работе со стационарными системами, например, в машинах и т. п.)			

Маркировка

а) Лазерный луч.

12.7	Электромагнитная совместимость (ЕМС)				
Описание	Термин электромагнитная совместимость означает способность электронных устройств штатно функционировать в такой среде, где присутствуют электромагнитное излучение и электростатическое влияние, не вызывая при этом электромагнитных помех в другом оборудовании.				
▲ Предупреж- дение	Прибор 3D Disto соответствует большинству самых строгих требований соответствующих стандартов и правил. Тем не менее, вероятность случайного воздействия на другие устройства не может быть полностью исключена.				
Осторожно	Никогда не пытайтесь самостоятельно ремонтировать изделие. В случае повреждения обращайтесь в местное представительство.				
А Предупреж- дение	Электромагнитное излучение может вызвать сбои в работе другого оборудования.				
	Хотя приборы Leica отвечают требованиям строгих норм и стандартов, которые действуют в этой области, Leica Geosystems не может полностью исключить возможность создания помех для другого оборудования.				

Вероятность наведения помех в другом оборудовании возникает при использовании прибора совместно с аксессуарами от других изготовителей, например, полевыми и персональными компьютерами, портативными рациями, нестандартными кабелями, внешними аккумуляторами.

Меры предосторожности:

Используйте только то оборудование и принадлежности, которые рекомендуются фирмой Leica Geosystems. В случае совместного использования с прибором они должны отвечать строгим требованиям, оговоренным действующими директивами и стандартами. При использовании компьютеров и раций обратите внимание на информацию об их электромагнитной совместимости, которую должен предоставить их изготовитель.

Помехи, создаваемые электромагнитным излучением, могут приводить к превышению допустимых пределов ошибок измерений. Хотя инструменты Leica отвечают строгим требованиям норм и стандартов EMC, Leica Geosystems не может полностью исключить возможность того, что их нормальная работа может нарушаться интенсивным электромагнитным излучением, например, вблизи радиопередатчиков, раций, дизельных электрогенераторов.

Меры предосторожности:

Контролируйте качество результатов, полученных в подобных условиях.

Работа прибора с присоединенными с одного конца кабелями (например, с присоединенным кабелем для подключения к внешнему источнику питания или с присоединенным только к прибору кабелем связи) может привести к превышению допустимого уровня электромагнитного излучения и нарушению штатной работы другой аппаратуры. Меры предосторожности: Во время работы с прибором кабели соединения, например, с внешним

аккумулятором, должны быть подключены с обоих концов.

Работа с беспроводной сетью

Электромагнитное излучение может вызывать помехи в другом оборудовании, в установках, в медицинских устройствах, например кардиостимуляторы или слуховые аппараты и в самолете. А также, может влиять на людей и животных. Меры предосторожности:

Несмотря на то, что изделие встречается в комбинации с радио- или цифровыми телефонными устройствами, рекомендованными компанией Leica Geosystems, и в отношении такой комбинации действуют строгие правила и стандарты, Leica Geosystems не может полностью исключить вероятность нарушения работы другого оборудования и воздействия на людей или животных.

- Не используйте прибор в непосредственной близости от бензозаправочных станций, химических установок и на взрывоопасных объектах.
- Не включайте прибор рядом с медицинским оборудованием.
- Не включайте прибор на борту самолета.
- Не оставайтесь длительное время рядом с включенным прибором.

12.8 Нормы FCC (применимы в США)

Данное оборудование было протестировано и признано полностью удовлетворяющим требованиям для цифровых устройств класса В, в соответствии с разделом 15 Норм FCC.

Эти требования были разработаны для того, чтобы обеспечить разумную защиту против помех в жилых зонах.

Данное оборудование генерирует, использует и может излучать электромагнитную энергию и, если оно установлено и используется с нарушением инструкций, может вызывать помехи для радиосвязи. Тем не менее, нет гарантий того, что такие помехи не будут возникать в конкретной ситуации даже при соблюдении инструктивных требований.

Если данное оборудование создает помехи в радио- или телевизионном диапазоне, что может быть проверено включением и выключением инструмента, пользователь может попробовать снизить помехи одним из указанных ниже способов:

- Поменять ориентировку или место установки приемной антенны.
- Увеличить расстояние между оборудованием и приемником.
- Подсоединить оборудование к другой линии электросети по сравнению с той, к которой подключен приемник радио или ТВ-сигнала.
- Обратиться к дилеру или опытному технику-консультанту по радиотелевизионному оборудованию.

▲ Предупреж- дение	Изменения или модификации, не получившие официального одобрения фирмы Leica Geosystems, могут привести к аннулированию прав владельца на использование данного оборудования.
Данные об уровне излучения SAR	Заявление FCC о радиационном воздействии Мощность излучения прибора значительно меньше установленных FCC пределов радиочастотного воздействия. Тем не менее, при штатной эксплуатации прибора необходимо минимизировать его потенциальное воздействие на людей. Чтобы исключить превышение допустимых FCC пределов радиочастотного воздействия, не приближайтесь к прибору (встроенной антенне прибора) ближе чем на 20 см (и не позволяйте этого делать другим).

Маркировка блока управления

12.9

Соответствие национальным нормам

Соответствие национальным нормам

Настоящим компания Leica Geosystems AG, заявляет, что прибор соответствует всем основным требованиям и другим соответствующим положениям директив EC. Полный текст по этому поводу имеется на http://www.leica-geosystems.com/ce.

• Франция

В отношении Европейского экономического пространства: применение беспроводных изделий (или функции беспроводной связи этого изделия) ограничено во Франции использованием внутри помещений.

• Япония

Министерством внутренних дел и связи данному устройству был присвоен индекс согласно «Указу о сертификации на соответствие техническим требованиям и т. д. для определенного радиооборудования (特定無線設備の技 術基準適合証明等に関する規則)», Статья 2-1-хх «Данное устройство не подлежит изменениям конструкции (в противном случае присвоенный индекс будет признан недействительным)».

Данное оборудование имеет Сертификат проверки типа, выданный на основании закона о радиоустройствах. 本機器は電波法に基づく工事設計認証を取得しています Соответствие национальным нормам, которые не входят в FCC, статья 15, или Директиву 1999/5/EC, должно проверяться и согласовываться до начала использования оборудования. 13

Технические характеристики

Точность		на 10 м	на 30 м	на 50 м
наклонного расстояния (3D)	Сочетание определения угла и расстояния	прибл. 1 мм	прибл. 2 мм	прибл. 4 мм
Измерение угла (Гц/В)	Рабочий диапазон: Точность:	По горизонтали 360°, по вертикали 250° 5 дюймов (1,2 мм при 50 м)		
Характеристики лазерного дальномера	Измерительная система: Тип: Рабочий диапазон: Класс лазера: Тип лазера: Размер точки лазера (на расстоянии):	Базовая частота анализатора системы 100 МГц - 150 МГц Коаксиальный, видимый красный лазер 0,5 - 50 м 2 650 нм; < 1 мВт на 10 м: ~7 мм x 7 мм на 30 м: ~9 мм x 15 мм		а системы сный лазер

Диапазон автоматического выравнивания:	± 3°	
Точность:	10 дюймов (2,5 мм на 50 м)	
Масштабирование (увеличение):	1x, 2x, 4x, 8x	
Поле обзора (на 10 м):	1х: 3,40 м х 2,14 м	
	2х: 1,70 м х 1,07 м	
	4х: 0,85 м х 0,54 м	
	8х: 0,42 м х 0,27 м	
1°/мм		
	Диапазон автоматического выравнивания: Точность: Масштабирование (увеличение): Поле обзора (на 10 м): 1°/мм	Диапазон автоматического выравнивания: ± 3° Точность: 10 дюймов (2,5 мм на 50 м) Масштабирование (увеличение): 1x, 2x, 4x, 8x Поле обзора (на 10 м): 1x: 3,40 м x 2,14 м 2x: 1,70 м x 1,07 м 4x: 0,85 м x 0,54 м 8x: 0,42 м x 0,27 м 1°/мм
Операция

Тип	Описание
Дисплей	Экран высокого разрешения, 800 x 480 пикселей, 4,8 дюйма TFT ЖКИ, 16 мил. цв.
Клавиши/интерфейс пользователя	3D Disto: кнопка включения Блок управления: сенсорный экран, кнопка включения
Емкость памяти	Флэш-память: 32 ГБ
Порты	3D Disto : USB тип B, штепсель питания, штепсель питания для блока управления Блок управления : USB тип A, Micro-B, штепсель питания

Обмен данными

Тип	Описание
Передача данных	USB: тип Micro-B и тип А, беспроводная связь (WLAN)
Беспроводная технология	SD-карта, диапазон 50 м (в зависимости от окружения), 11 каналов
Поддерживаемый формат данных	Импорт: DXF, CSV Экспорт: DXF, TXT, CSV, JPG

Питание	Инструмент	Тип	Стандартное время работы
	3D Disto	Литий-ионная аккумуляторная батарея, напряжение: 14,4 В 63 Вт ч, время зарядки 8 ч Напряжение внешнего источника питания: 24 В пост. тока, 2,5 А	8 ч
	Блок управления	Литий-ионный аккумулятор, 2500 мА·ч, 3,7 В Напряжение внешнего источника питания: 5 В пост. тока, 2,0 А, время зарядки 7 ч	6ч
Монтаж	Резьба 5/8 дюй	ма	
Габаритные размеры прибора	3D Disto: Блок управлени	186,6 х 215,5 мм (диаметр » я: 178,5 х 120 х 25,8 мм	высота)
Bec	3D Disto: Блок управлени	2,8 кг เя: 0,33 кг	

3D Disto, Технические характеристики

Характеристики условий окружающей среды	Температура	Температура			
	Тип	Температура эксплуатации [°C]	Температура хранения [°C]		
-	3D Disto	от -10 до +50	от -25 до +70		
	Блок управления	от -10 до +50	от -25 до +70		

Защита от пыли, песка и воды

Тип	Степень защиты
3D Disto	IP54 (IEC 60529)
Блок управления	IP5X

Влажность

Тип	Степень защиты
3D Disto	Макс. 85% относ. влажн. без конденсации
Блок управления	Макс. 85% относ. влажн. без конденсации

Пульт	Диапазон:	25 м (в зависимости от окружения и условий
дистанционного		эксплуатации)
управления RM100	Обмен данными: Аккумуляторная батарея	Инфракрасная система (ИК) 1 АА, 1,5 В

Ограниченная международная гарантия, лицензионное соглашение по программному обеспечению

Ограниченная международная гарантия

14

На данное изделие распространяются положения и условия международной ограниченной гарантии, которую можно загрузить с домашней страницы компании Leica Geosystems по адресу http://www.leica-geosystems.com/internationalwarranty или взять в местном представительстве Leica Geosystems. Указанная гарантия является исключительной и заменяет собой все другие гарантии, требования или условия, явные или косвенные, установленные фактически, юридически или иным образом, включая гарантии, требования или условия годности для продажи, пригодности для той или иной цели, удовлетворительности качества и патентной чистоты, все из которых теряют свою силу.

На прибор 3D Disto распространяется трехлетняя* гарантия компании Leica Geosystems.

Более подробную информацию можно найти на веб-сайте:

https://myworld.leica-geosystems.com

С сохранением всех прав на изменения (чертежей, описаний, технических характеристик).

* Для оформления трехлетней гарантии прибор 3D Disto необходимо зарегистрировать на веб-сайте https://myworld.leica-geosystems.com в течение восьми недель с даты приобретения. На незарегистрированные приборы распространяется двухлетняя гарантия. Лицензионное соглашение по программному обеспечению Данный прибор поставляется с уже установленным программным обеспечением (ПО), либо в комплекте с компьютерным носителем данных, на котором оно записано; кроме этого, ПО можно загрузить из Интернета с предварительного разрешения Leica Geosystems. Это программное обеспечение защищено авторскими и другими правами на интеллектуальную собственность, поэтому его использование должно осуществляться в соответствии с лицензионным соглашением между Вами и Leica Geosystems, которое охватывает такие аспекты как рамки действия этого соглашения, гарантии, права на интеллектуальную собственность, ответственность сторон, применимое законодательство и рамки юрисдикции. Внимательно следите за тем, чтобы Ваша деятельность соответствовала условиям лицензионного соглашения с Leica Geosystems.

Текст этого соглашения поставляется вместе со всеми программными продуктами, его также можно скопировать с сайта Leica Geosystems http://www.leicageosystems.com/swlicense, или получить у местного дистрибьютора Leica Geosystems.

Запрещается устанавливать и использовать программное обеспечение без ознакомления и принятия условий лицензионного соглашения с Leica Geosystems. Установка и использование ПО или его компонентов подразумевает, что Вы приняли условия этого соглашения. Если Вы не согласны с какими-либо положениями или условиями лицензионного соглашения, то Вы не имеете права загружать и использовать программное обеспечение и обязаны вернуть его поставщику вместе со всей сопровождающей документацией и счетами о его оплате в течение десяти (10) дней со времени покупки для полной компенсации затрат на приобретение программного обеспечения.

Открытое	Элементы программного обеспечения прибора 3D Disto разработаны в
лицензионное	соответствии с GPL (открытым лицензионным соглашением GNU).
соглашение GNU	Cooтветствующие лицензии можно найти в папке лицензий GPL (GPL licenses)
	компакт-диска с документацией прибора 3D Disto. Для получения дополнительной
	информации используйте контактную информацию, приведенную на веб-сайте
	www.leica-geosystems.com.

Алфавитный указатель

Α

Абсолютная высота1	.22
Автоматическое сканирование1	.56
Аккумуляторная батарея	
Зарядка аккумуляторных батарей	60
Первое использование	59

Б

Базовая высота	18, 121, 133
Базовая линия	19, 125
Базовая ось	19
Базовая точка	
Беспроводная связь	
Библиотека	78, 132
Блок управления	
Ввод пользовательских данных	
Импорт данных	79
Источник питания	
Компоненты	35
Экспорт данных	83

В

Вертикаль	
Вертикальная юстировка	113, 116
Bec	218
Видоискатель	21, 49, 52, 92
Включение	59
Восстановление	53
Время	62, 72
Всплывающее окно	41, 67
Выбор	103
Выравнивание	171
Вычитание	
Во время измерения	107
После измерения	105

Г

Гарантия	221
Горизонт	17, 95
Горизонтальная площадь	17, 108, 109
Горизонтальные объемы	109
Горизонтальный угол	14

Д

Дата	2,72
Датчик наклона	20
Демонстрационный режим	42
Дисплей	49
Дистанционное управление 27, 36, 58	3, 174
Добавление	
Во время измерения	107
После измерения	105
Документация	11
Руководство по эксплуатации	11

Ε

Единицы измерения	
-------------------	--

3

Заводские настройки	187
Запоминающее устройство	82, 84
Защита от воровства	188
Значок	54, 68, 76

И

Измерение	24, 52, 90, 96, 135
Импорт	
Инструкции по безопасности	

Инструменты	112
Инструменты смещения	94
Интерфейс	31, 48
Инфракрасный (ИК) порт	31
Источник питания	
3DDisto	37
Блок управления	38
Пульт дистанционного управления RM100	40

к

Кабель	29, 32, 37, 39
Как работать с этим документом	10
Калибровка2	5, 180, 183, 185
Калькулятор	87
Кнопки	50, 74, 174
Команды поворота	95
Компакт-диск	29
Компоненты	
3DDisto	
Блок управления	35
Пульт дистанционного управлен	ния RM10036
Контрольные точки	
Конфигурация	69
Координаты	23

Краткое описание	11
Круглый уровень	31

Л

Лазер

Классификация	203
Лазерный дальномер	25, 31
Линейка для смещенных точек	
Линейные измерения	58
Линия визирования	14
Лицензионный ключ	41, 70

м

N	Паркировка	
	3DDisto	211
	Блок управления	
	Пульт дистанционного управления	RM100212
N	Ласштаб	51, 54
Ν	Асштабирование	51, 93
Ν	Леню	50, 69
Ν	Лестоположение	
N	Лишени	
N	Аногоугольник	53, 100
N	Лодуль памяти USB	29, 82, 84

н

Набор инструментов	57, 113
Наведение	58, 90, 92, 117, 118
Наклон	20, 33, 61
Наклонная площадь	
Наклонное расстояние	
Настройки	71
Нормы FCC	209

0

Обозначения	55, 56, 57
Объем	108
Ограничения по использованию	196
Определение уровня	120
Ось вращения инструмента	14
Ось вращения трубы	14
Отмена	53

п

Панель инструментов	
Папка	
Параллельная линия	
Передача данных	69, 79
Перезагрузка	41
Перекрестие видоискателя	

Пересчет координат129	Разделитель деся
ПК43, 46, 63, 80, 83	Расстояние
Площадь17, 108	Расстояние до пе
Горизонтальная109	Расстояние по ве
наклонная111	Расстояние по го
Поверки и юстировки178	Режим разворот
Подключение USB29	Результирующие
Поле обзора216	Ремешок
Поле результирующих значений	Риски эксплуатац
Поле эскиза 49	Руководство по з
Пользовательский интерфейс 48	Использовани
Помощник72	Краткое опис
Построение сетки25, 166	Область прим
Приложение	c
Демонстрационный режим 42	C
Лицензирование и активация приложений 43	Самовыравниван
Приложения41	Сорос
Программа41	Светодиод
Программное обеспечение 41, 70, 112	Серииныи номер
Проектор112, 166, 167	Сканирование
Проекция25	сканирование по
	Скрытая точка
P C C C C C C C C C C C C C C C C C C C	Содержимое кон

Радиус действия		72	2
-----------------	--	----	---

азделитель десятичных разрядов	62
эсстояние	16
асстояние до перпендикуляра	16
асстояние по вертикали	16
асстояние по горизонтали	16
ежим разворота	137
езультирующие значения	49
эмешок	35
иски эксплуатации	198
ководство по эксплуатации	
Использование	10
Краткое описание документов	11
Область применения данного д	окумента10

Самовыравнивание	33, 61
Сброс	41, 72, 178
Светодиод	33, 36
Серийный номер	2
Сканирование	156
Сканирование помещения	56, 112, 133
Скрытая точка	26, 94
Содержимое контейнера	29
Сообщения об ошибках	

Средство построения окружностей	141
Средство построения прямоугольников	143
Строка заголовка	49
Строка состояния	49, 54, 68
Сумма	105
Сушка и чистка	192

т

Температура	 219
Прибор	
_	210

При эксплуатации	
Температура хранения	219
Температура эксплуатации	219
Техника безопасности	
Техническая терминология	14
Технические характеристики	215
Торговые марки	
Транспортировка	

У

Увеличение54,	93
Угол	
Вертикальный	15
Горизонтальный	14
Уклоны96, 1	34

Уровни отв	етственности	 7
Установки		 9

Φ

Файлы	76,	79
Фотографии		73
Функция согласования	1	70

х

Характери	істики условий	окружающей	среды	219
Хранение			190	, 191

Ч

Черчение		 	 	 103
Черчение	линии	 	 	 103

ш

Штатное использование	 .19	4	i

Э

Экспорт	72, 83
Экспортируемые файлы	85
Электромагнитная совместимость (EMC)	205
Электронные юстировки	178

ю

я

Язык62,	72
Яркость	94
DXF	25

Патенты:

WO 9427164 WO 0216964 US 5949531 WO 0244754 EP 1195617 WO 9818019

Leica Geosystems AG

Heinrich-Wild-Strasse CH-9435 Heerbrugg Switzerland Телефон: +41 71 727 31 31

www.leica-geosystems.com

- when it has to be **right**

